训练用单针/双针带线【出售】-->外科训练模块总目录
0.5、1、2、3.5、5mm仿生血管仿生体 - 胸腹一体式腹腔镜模拟训练器
仿气腹/半球形腹腔镜模拟训练器
[单端多孔折叠]腹腔镜模拟训练器
「训练教具器械汇总」管理员微信/QQ12087382[问题反馈]
开启左侧

[病历讨论] 机器人入路在肝脏手术中的当前作用和前景如何?

[复制链接]
发表于 2023-6-8 00:00:04 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

×
机器人肝脏手术的应用越来越频繁。 据报道,与腹腔镜肝脏手术相比,围手术期结果具有可比性,并且在特定情况下具有更好的效果。 在目前的形式下,机器人手术最常被提及的优势是提高了灵活性。 其在日常临床实践中更广泛实施的重要障碍是相关成本、技术困难和证据稀缺。 机器人肝脏手术可能会继续与增强机器人能力的技术发展同步发展。

随着微创手术的历史发展,腹腔镜和机器人方法现在经常被用于进行主要的腹部手术。 然而,机器人方法在肝脏手术中的作用仍然存在争议,并且尚未定义标准化、安全的技术。 本综述旨在总结机器人肝脏手术目前可用的证据和前景。 与开放式肝脏手术相比,微创肝脏手术在减少失血和降低并发症发生率方面具有广泛的益处,包括肝脏特异性并发症,如临床相关的胆汁渗漏和肝切除术后肝衰竭。 此外,已经报道了与开放式肝脏手术相当的 R0 切除率,从而证明了微创方法的安全性和肿瘤学效率。 然而,机器人肝脏手术是否比腹腔镜肝脏手术具有优势仍存在争议。 在目前的文献中,与腹腔镜检查相比,机器人肝脏手术主要与非劣效结果相关,尽管有人认为机器人方法具有更短的学习曲线、更低的转化率和更少的术中失血。 机器人手术系统通过集成 3D 系统提供更逼真的图像。 此外,机器人手术系统提供的改进的灵巧性可以导致改善的术中和术后结果。 未来,可能会实施集成和改进的触觉反馈机制、人工智能以及更多肝脏特异性解剖器的引入,进一步增强机器人的能力。

由于技术的发展、消除人为错误的需要、促进外科医生执行对开放式和微创方法都具有挑战性的手术,以及不断改善临床结果的需要,微创手术系统一直在不断发展。 微创方法的使用越来越广泛,也导致机器人方法在主要腹部外科手术中的迅速采用。 机器人方法也被用于许多其他领域,例如乳腺癌和重建手术。 尽管机器人手术的有效性已被证明对多种适应症有效,但由于相对较高的成本、技术困难以及没有足够有力的证据证明其在肝切除等具有挑战性的手术中的有效性,其使用仍然受到限制。

尽管如此,有经验的中心已经报告了微创肝脏手术 (MILS) 在选定患者中的一些好处。 在此背景下,术后疼痛少、出血少、手术部位感染率低、住院时间短是常被提及的优点。 然而,机器人肝脏手术是否比腹腔镜肝脏手术具有优势仍然是一个争论不休的问题。

尽管机器人肝脏手术现在得到广泛应用,但尽管有关该主题的文献越来越多(图 1),但尚未描述标准化、可复制和安全的技术。 这可能是由于肝脏手术的具体技术困难和缺乏定制的手术器械,特别是对于实质横断阶段。 上述例子让一些外科医生对机器人肝脏手术的应用持谨慎态度。 尽管如此,在 2006 年就已经报道了第一例机器人肝脏切除术,此后,由于自 1990 年代初以来在腹腔镜手术中获得的经验,机器人肝脏手术的使用增加得相当快。 与此同时,机器人肝脏手术的适应症也在不断扩大,从最初的楔形切除、肝段切除,到现在的半肝切除、扩大半肝切除、后上段切除、供肝切除、ALLPS。

机器人入路在肝脏手术中的当前作用和前景如何?

机器人入路在肝脏手术中的当前作用和前景如何?

图 1
随着时间的推移,关于机器人肝脏手术的出版物数量不断增加(来源:PubMed)。

机器人入路在肝脏手术中的当前作用和前景如何?

机器人入路在肝脏手术中的当前作用和前景如何?

图 2
放射图像的 3D 重建。 (a) 二维腹部计算机断层扫描,轴向。 (b) 肝脏的门脉和肝静脉系统的 3D 重建和图像集成。

随着技术和外科技术的发展,微创肝脏手术也在不断发展。 机器人肝脏手术已被证明是安全、可行的,并且可以提供与开腹手术如腹腔镜手术相当的优点。 此外,在技术复杂的环境中,机器人肝脏手术似乎比腹腔镜手术在术中出血量减少和转化率降低方面具有较小的术中优势。

尽管与传统腹腔镜相比,机器人手术系统具有更平滑和更宽的运动范围,但由于其手臂的六轴移动性和集成 3D 图像系统,一个重要的缺点是当前系统不提供组织张力反馈。 该技术的另一个重要缺点是其当前形式的高成本,但预计由于多个供应商的存在以及市场上新机器人手术系统的存在,这些成本将很快下降。

还可以预见,机器人手术系统将在不久的将来实现带导航的腹部手术,并更广泛地实施成像模式。 此外,预计人工智能将越来越多地被接受。

随着机器人手术系统的技术发展以及集成放射成像系统和人工智能技术的实施,机器人在肝脏手术方面的优势毋庸置疑,涉及具有非常复杂的动脉、静脉和胆道解剖结构的器官, 将增加。
 楼主| 发表于 2023-6-8 00:00:05 | 显示全部楼层
参考资料
1. Chen K., Zhang J., Beeraka N.M., Sinelnikov M.Y., Zhang X., Cao Y., Lu P. Robot-Assisted Minimally Invasive Breast Surgery: Recent Evidence with Comparative Clinical Outcomes. J. Clin. Med. 2022;11:1827. doi: 10.3390/jcm11071827.   
2. Li J.J., Zhang Z.B., Xu S.Y., Zhang C.R., Yang X.F., Duan Y.X. Robotic versus Laparoscopic Total Mesorectal Excision Surgery in Rectal Cancer: Analysis of Medium-Term Oncological Outcomes. Surg. Innov. 2022:15533506221100283. doi: 10.1177/15533506221100283.   
3. Kamarajah S.K., Griffiths E.A., Phillips A.W., Ruurda J., van Hillegersberg R., Hofstetter W.L., Markar S.R. Robotic Techniques in Esophagogastric Cancer Surgery: An Assessment of Short- and Long-Term Clinical Outcomes. Ann. Surg. Oncol. 2022;29:2812–2825. doi: 10.1245/s10434-021-11082-y.   
4. Zhang X.P., Xu S., Hu M.G., Zhao Z.M., Wang Z.H., Zhao G.D., Li C.G., Tan X.L., Liu R. Short- and long-term outcomes after robotic and open liver resection for elderly patients with hepatocellular carcinoma: A propensity score-matched study. Surg. Endosc. 2022 doi: 10.1007/s00464-022-09236-4.   
5. Shapera E.A., Ross S., Syblis C., Crespo K., Rosemurgy A., Sucandy I. Analysis of Oncological Outcomes After Robotic Liver Resection for Intrahepatic Cholangiocarcinoma. Am. Surg. 2022 doi: 10.1177/00031348221093933. ahead of print .   
6. Robles-Campos R., Lopez-Lopez V., Brusadin R., Lopez-Conesa A., Gil-Vazquez P.J., Navarro-Barrios Á., Parrilla P. Open versus minimally invasive liver surgery for colorectal liver metastases (LapOpHuva): A prospective randomized controlled trial. Surg. Endosc. 2019;33:3926–3936. doi: 10.1007/s00464-019-06679-0.   
7. Hawksworth J., Radkani P., Nguyen B., Belyayev L., Llore N., Holzner M., Mateo R., Meslar E., Winslow E., Fishbein T. Improving safety of robotic major hepatectomy with extrahepatic inflow control and laparoscopic CUSA parenchymal transection: Technical description and initial experience. Surg. Endosc. 2022;36:3270–3276. doi: 10.1007/s00464-021-08639-z.   
8. Ryska M., Fronek J., Rudis J., Jurenka B., Langer D., Pudil J. Manuální a robotická laparoskopická resekce jater. Dve kazuistiky. [Manual and robotic laparoscopic liver resection. Two case-reviews] Rozhl. Chir. 2006;85:511–516.  
9. Eubanks S. The role of laparoscopy in diagnosis and treatment of primary or metastatic liver cancer. Semin. Surg. Oncol. 1994;10:404–410. doi: 10.1002/ssu.2980100607.   
10. Durán M., Briceño J., Padial A., Anelli F.M., Sánchez-Hidalgo J.M., Ayllón M.D., Calleja-Lozano R., García-Gaitan C. Short-term outcomes of robotic liver resection: An initial single-institution experience. World J. Hepatol. 2022;14:224–233.   
11. Varghese C.T., Chandran B., Gopalakrishnan U., Nair K., Mallick S., Mathew J.S., Sivasankara Pillai Thankamony Amma B., Balakrishnan D., Othiyil Vayoth S., Sudhindran S. Extended criteria donors for robotic right hepatectomy: A propensity score matched analysis. J. Hepatobiliary Pancreat. Sci. 2022;29:874–883. doi: 10.1002/jhbp.1145.   
12. Di Benedetto F., Magistri P., Guerrini G.P., Di Sandro S. Robotic liver partition and portal vein embolization for staged hepatectomy for perihilar cholangiocarcinoma. Updates Surg. 2022;74:773–777. doi: 10.1007/s13304-021-01209-x.   
13. Berardi G., Aghayan D., Fretland Å.A., Elberm H., Cipriani F., Spagnoli A., Montalti R., Ceelen W.P., Aldrighetti L., Abu Hilal M., et al. Multicentre analysis of the learning curve for laparoscopic liver resection of the posterosuperior segments. Br. J. Surg. 2019;106:1512–1522. doi: 10.1002/bjs.11286.   
14. Halls M.C., Alseidi A., Berardi G., Cipriani F., Van der Poel M., Davila D., Ciria R., Besselink M., D’Hondt M., Dagher I., et al. A Comparison of the Learning Curves of Laparoscopic Liver Surgeons in Differing Stages of the IDEAL Paradigm of Surgical Innovation: Standing on the Shoulders of Pioneers. Ann. Surg. 2019;269:221–228. doi: 10.1097/SLA.0000000000002996.   
15. de Rooij T., Cipriani F., Rawashdeh M., van Dieren S., Barbaro S., Abuawwad M., van Hilst J., Fontana M., Besselink M.G., Abu Hilal M. Single-Surgeon Learning Curve in 111 Laparoscopic Distal Pancreatectomies: Does Operative Time Tell the Whole Story? J. Am. Coll. Surg. 2017;224:826–832.e1. doi: 10.1016/j.jamcollsurg.2017.01.023.   
16. Hopper A.N., Jamison M.H., Lewis W.G. Learning curves in surgical practice. Postgrad. Med. J. 2007;83:777–779. doi: 10.1136/pgmj.2007.057190.   
17. Müller P.C., Kuemmerli C., Cizmic A., Sinz S., Probst P., de Santibanes M., Shrikhande S.V., Tschuor C., Loos M., Mehrabi A., et al. Learning Curves in Open, Laparoscopic, and Robotic Pancreatic Surgery. Ann. Surg. Open. 2022;3:e111. doi: 10.1097/AS9.0000000000000111.  
18. O'Connor V.V., Vuong B., Yang S.T., DiFronzo A. Robotic Minor Hepatectomy Offers a Favorable Learning Curve and May Result in Superior Perioperative Outcomes Compared with Laparoscopic Approach. Am. Surg. 2017;83:1085–1088. doi: 10.1177/000313481708301014.   
19. Chen P.D., Wu C.Y., Hu R.H., Chen C.N., Yuan R.H., Liang J.T., Lai H.S., Wu Y.M. Robotic major hepatectomy: Is there a learning curve? Surgery. 2017;161:642–649. doi: 10.1016/j.surg.2016.09.025.   
20. Abu Hilal M., Aldrighetti L., Dagher I., Edwin B., Troisi R.I., Alikhanov R., Aroori S., Belli G., Besselink M., Briceno J., et al. The Southampton Consensus Guidelines for Laparoscopic Liver Surgery: From Indication to Implementation. Ann. Surg. 2018;268:11–18. doi: 10.1097/SLA.0000000000002524.   
21. Gall T.M.H., Alrawashdeh W., Soomro N., White S., Jiao L.R. Shortening surgical training through robotics: Randomized clinical trial of laparoscopic versus robotic surgical learning curves. BJS Open. 2020;4:1100–1108. doi: 10.1002/bjs5.50353.   
22. Chandra V., Nehra D., Parent R., Woo R., Reyes R., Hernandez-Boussard T., Dutta S. A comparison of laparoscopic and robotic assisted suturing performance by experts and novices. Surgery. 2010;147:830–839. doi: 10.1016/j.surg.2009.11.002.   
23. Aloia T.A., Fahy B.N., Fischer C.P., Jones S.L., Duchini A., Galati J., Gaber A.O., Ghobrial R.M., Bass B.L. Predicting poor outcome following hepatectomy: Analysis of 2313 hepatectomies in the NSQIP database. HPB. 2009;11:510–515. doi: 10.1111/j.1477-2574.2009.00095.x.   
24. Tranchart H., Gaillard M., Chirica M., Ferretti S., Perlemuter G., Naveau S., Dagher I. Multivariate analysis of risk factors for postoperative complications after laparoscopic liver resection. Surg. Endosc. 2015;29:2538–2544. doi: 10.1007/s00464-014-3965-0.   
25. Nobili C., Marzano E., Oussoultzoglou E., Rosso E., Addeo P., Bachellier P., Jaeck D., Pessaux P. Multivariate analysis of risk factors for pulmonary complications after hepatic resection. Ann. Surg. 2012;255:540–550. doi: 10.1097/SLA.0b013e3182485857.   
26. Spampinato M.G., Coratti A., Bianco L., Caniglia F., Laurenzi A., Puleo F., Ettorre G.M., Boggi U. Perioperative outcomes of laparoscopic and robot-assisted major hepatectomies: An Italian multi-institutional comparative study. Surg. Endosc. 2014;28:2973–2979. doi: 10.1007/s00464-014-3560-4.   
27. Tsung A., Geller D.A., Sukato D.C., Sabbaghian S., Tohme S., Steel J., Marsh W., Reddy S.K., Bartlett D.L. Robotic versus laparoscopic hepatectomy: A matched comparison. Ann. Surg. 2014;259:549–555. doi: 10.1097/SLA.0000000000000250.   
28. Wu Y.M., Hu R.H., Lai H.S., Lee P.H. Robotic-assisted minimally invasive liver resection. Asian J. Surg. 2014;37:53–57. doi: 10.1016/j.asjsur.2014.01.015.   
29. Choi G.H., Choi S.H., Kim S.H., Hwang H.K., Kang C.M., Choi J.S., Lee W.J. Robotic liver resection: Technique and results of 30 consecutive procedures. Surg. Endosc. 2012;26:2247–2258. doi: 10.1007/s00464-012-2168-9.   
30. Lai E.C., Yang G.P., Tang C.N. Robot-assisted laparoscopic liver resection for hepatocellular carcinoma: Short-term outcome. Am. J. Surg. 2013;205:697–702. doi: 10.1016/j.amjsurg.2012.08.015.   
31. Giulianotti P.C., Coratti A., Sbrana F., Addeo P., Bianco F.M., Buchs N.C., Annechiarico M., Benedetti E. Robotic liver surgery: Results for 70 resections. Surgery. 2011;149:29–39. doi: 10.1016/j.surg.2010.04.002.   
32. Troisi R.I., Patriti A., Montalti R., Casciola L. Robot assistance in liver surgery: A real advantage over a fully laparoscopic approach? Results of a comparative bi-institutional analysis. Int. J. Med. Robot. 2013;9:160–166. doi: 10.1002/rcs.1495.   
33. Tranchart H., Ceribelli C., Ferretti S., Dagher I., Patriti A. Traditional versus robot-assisted full laparoscopic liver resection: A matched-pair comparative study. World. J. Surg. 2014;38:2904–2909. doi: 10.1007/s00268-014-2679-8.   
34. Packiam V., Bartlett D.L., Tohme S., Reddy S., Marsh J.W., Geller D.A., Tsung A. Minimally invasive liver resection: Robotic versus laparoscopic left lateral sectionectomy. J. Gastrointest. Surg. 2012;16:2233–2238. doi: 10.1007/s11605-012-2040-1.   
35. Yu Y.D., Kim K.H., Jung D.H., Namkoong J.M., Yoon S.Y., Jung S.W., Lee S.K., Lee S.G. Robotic versus laparoscopic liver resection: A comparative study from a single center. Langenbecks Arch. Surg. 2014;399:1039–1045. doi: 10.1007/s00423-014-1238-y.   
36. Kamarajah S.K., Bundred J., Manas D., Jiao L., Hilal M.A., White S.A. Robotic versus conventional laparoscopic liver resections: A systematic review and meta-analysis. Scand. J. Surg. 2021;110:290–300. doi: 10.1177/1457496920925637.   
37. Bennett S., Baker L.K., Martel G., Shorr R., Pawlik T.M., Tinmouth A., McIsaac D.I., Hébert P.C., Karanicolas P.J., McIntyre L., et al. The impact of perioperative red blood cell transfusions in patients undergoing liver resection: A systematic review. HPB. 2017;19:321–330. doi: 10.1016/j.hpb.2016.12.008.   
38. Nösser M., Feldbrügge L., Pratschke J. Minimally invasive liver surgery: The Charité experience. Turk. J. Surg. 2021;37:199–206. doi: 10.47717/turkjsurg.2021.1011.   
39. D’Hondt M., Devooght A., Willems E., Wicherts D., De Meyere C., Parmentier I., Provoost A., Pottel H., Verslype C. Transition from laparoscopic to robotic liver surgery: Clinical outcomes, learning curve effect, and cost-effectiveness. J. Robot. Surg. 2022 doi: 10.1007/s11701-022-01405-w.   
40. Kadam P., Sutcliffe R.P., Scatton O., Sucandy I., Kingham T.P., Liu R., Choi G.H., Syn N.L., Gastaca M., Choi S.H., et al. An international multicenter propensity-score matched and coarsened-exact matched analysis comparing robotic versus laparoscopic partial liver resections of the anterolateral segments. J. Hepatobiliary Pancreat. Sci. 2022 doi: 10.1002/jhbp.1149.   
41. Masetti M., Fallani G., Ratti F., Ferrero A., Giuliante F., Cillo U., Guglielmi A., Ettorre G.M., Torzilli G., Vincenti L., et al. Minimally invasive treatment of colorectal liver metastases: Does robotic surgery provide any technical advantages over laparoscopy? A multicenter analysis from the IGoMILS (Italian Group of Minimally Invasive Liver Surgery) registry. Updates Surg. 2022;74:535–545. doi: 10.1007/s13304-022-01245-1.   
42. Hu M., Liu Y., Li C., Wang G., Yin Z., Lau W.Y., Liu R. Robotic versus laparoscopic liver resection in complex cases of left lateral sectionectomy. Int. J. Surg. 2019;67:54–60. doi: 10.1016/j.ijsu.2019.05.008.   
43. Blikkendaal M.D., Twijnstra A.R., Stiggelbout A.M., Beerlage H.P., Bemelman W.A., Jansen F.W. Achieving consensus on the definition of conversion to laparotomy: A Delphi study among general surgeons, gynecologists, and urologists. Surg. Endosc. 2013;27:4631–4639. doi: 10.1007/s00464-013-3086-1.   
44. Yang C., Wexner S.D., Safar B., Jobanputra S., Jin H., Li V.K., Nogueras J.J., Weiss E.G., Sands D.R. Conversion in laparoscopic surgery: Does intraoperative complication influence outcome? Surg. Endosc. 2009;23:2454–2458. doi: 10.1007/s00464-009-0414-6.   
45. de Neree Tot Babberich M.P.M., van Groningen J.T., Dekker E., Wiggers T., Wouters M.W.J.M., Bemelman W.A., Tanis P.J., Dutch Surgical Colorectal Audit Laparoscopic conversion in colorectal cancer surgery; is there any improvement over time at a population level? Surg. Endosc. 2018;32:3234–3246. doi: 10.1007/s00464-018-6042-2.   
46. Halls M.C., Cipriani F., Berardi G., Barkhatov L., Lainas P., Alzoubi M., D’Hondt M., Rotellar F., Dagher I., Aldrighetti L., et al. Conversion for Unfavorable Intraoperative Events Results in Significantly Worse Outcomes During Laparoscopic Liver Resection: Lessons Learned from a Multicenter Review of 2861 Cases. Ann. Surg. 2018;268:1051–1057. doi: 10.1097/SLA.0000000000002332.   
47. Crippa J., Grass F., Achilli P., Mathis K.L., Kelley S.R., Merchea A., Colibaseanu D.T., Larson D.W. Risk factors for conversion in laparoscopic and robotic rectal cancer surgery. Br. J. Surg. 2020;107:560–566. doi: 10.1002/bjs.11435.   
48. Lof S., Korrel M., van Hilst J., Moekotte A.L., Bassi C., Butturini G., Boggi U., Dokmak S., Edwin B., Falconi M., et al. Outcomes of Elective and Emergency Conversion in Minimally Invasive Distal Pancreatectomy for Pancreatic Ductal Adenocarcinoma: An International Multicenter Propensity Score-matched Study. Ann. Surg. 2021;274:e1001–e1007. doi: 10.1097/SLA.0000000000003717.   
49. Lof S., Vissers F.L., Klompmaker S., Berti S., Boggi U., Coratti A., Dokmak S., Fara R., Festen S., D’Hondt M., et al. European consortium on Minimally Invasive Pancreatic Surgery (E-MIPS). Risk of conversion to open surgery during robotic and laparoscopic pancreatoduodenectomy and effect on outcomes: International propensity score-matched comparison study. Br. J. Surg. 2021;108:80–87. doi: 10.1093/bjs/znaa026.   
50. Shah P.C., de Groot A., Cerfolio R., Huang W.C., Huang K., Song C., Li Y., Kreaden U., Oh D.S. Impact of type of minimally invasive approach on open conversions across ten common procedures in different specialties. Surg. Endosc. 2022;36:6067–6075. doi: 10.1007/s00464-022-09073-5. Erratum in: Surg. Endosc. 2022, 36, 7075.   
51. Gheza F., Esposito S., Gruessner S., Mangano A., Fernandes E., Giulianotti P.C. Reasons for open conversion in robotic liver surgery: A systematic review with pooled analysis of more than 1000 patients. Int. J. Med. Robot. 2019;15:e1976. doi: 10.1002/rcs.1976.   
52. Liu R., Wakabayashi G., Kim H.J., Choi G.H., Yiengpruksawan A., Fong Y., He J., Boggi U., Troisi R.I., Efanov M., et al. International consensus statement on robotic hepatectomy surgery in 2018. World J. Gastroenterol. 2019;25:1432–1444. doi: 10.3748/wjg.v25.i12.1432.   
53. Yang T., Zhang J., Lu J.H., Yang G.S., Wu M.C., Yu W.F. Risk factors influencing postoperative outcomes of major hepatic resection of hepatocellular carcinoma for patients with underlying liver diseases. World J. Surg. 2011;35:2073–2082. doi: 10.1007/s00268-011-1161-0.   
54. Kyoden Y., Imamura H., Sano K., Beck Y., Sugawara Y., Kokudo N., Makuuchi M. Value of prophylactic abdominal drainage in 1269 consecutive cases of elective liver resection. J. Hepatobiliary Pancreat. Sci. 2010;17:186–192. doi: 10.1007/s00534-009-0161-z.   
55. Ishii T., Hatano E., Furuyama H., Manaka D., Terajima H., Uemoto S. Preventive Measures for Postoperative Bile Leakage After Central Hepatectomy: A Multicenter, Prospective, Observational Study of 101 Patients. World J. Surg. 2016;40:1720–1728. doi: 10.1007/s00268-016-3453-x.   
56. Capussotti L., Ferrero A., Viganò L., Sgotto E., Muratore A., Polastri R. Bile leakage and liver resection: Where is the risk? Arch. Surg. 2006;141:690–695. doi: 10.1001/archsurg.141.7.690.   
57. Abu Hilal M., Tschuor C., Kuemmerli C., López-Ben S., Lesurtel M., Rotellar F. Laparoscopic posterior segmental resections: How I do it: Tips and pitfalls. Int. J. Surg. 2020;82S:178–186. doi: 10.1016/j.ijsu.2020.06.052.   
58. Cipriani F., Shelat V.G., Rawashdeh M., Francone E., Aldrighetti L., Takhar A., Armstrong T., Pearce N.W., Abu Hilal M. Laparoscopic Parenchymal-Sparing Resections for Nonperipheral Liver Lesions, the Diamond Technique: Technical Aspects, Clinical Outcomes, and Oncologic Efficiency. J. Am. Coll. Surg. 2015;221:265–272. doi: 10.1016/j.jamcollsurg.2015.03.029.   
59. Martin A.N., Narayanan S., Turrentine F.E., Bauer T.W., Adams R.B., Stukenborg G.J., Zaydfudim V.M. Clinical Factors and Postoperative Impact of Bile Leak After Liver Resection. J. Gastrointest. Surg. 2018;22:661–667. doi: 10.1007/s11605-017-3650-4.   
60. Görgec B., Cacciaguerra A.B., Aldrighetti L.A., Ferrero A., Cillo U., Edwin B., Vivarelli M., Lopez-Ben S., Besselink M.G., Abu Hilal M., et al. Incidence and Clinical Impact of Bile Leakage after Laparoscopic and Open Liver Resection: An International Multicenter Propensity Score-Matched Study of 13,379 Patients. J. Am. Coll. Surg. 2022;234:99–112. doi: 10.1097/XCS.0000000000000039.   
61. Tee M.C., Chen L., Peightal D., Franko J., Kim P.T., Brahmbhatt R.D., Raman S., Scudamore C.H., Chung S.W., Segedi M. Minimally invasive hepatectomy is associated with decreased morbidity and resource utilization in the elderly. Surg. Endosc. 2020;34:5030–5040. doi: 10.1007/s00464-019-07298-5.   
62. Rahbari N.N., Garden O.J., Padbury R., Brooke-Smith M., Crawford M., Adam R., Koch M., Makuuchi M., Dematteo R.P., Christophi C., et al. Post hepatectomy liver failure: A definition and grading by the International Study Group of Liver Surgery (ISGLS) Surgery. 2011;149:713–724. doi: 10.1016/j.surg.2010.10.001.   
63. Hammond J.S., Guha I.N., Beckingham I.J., Lobo D.N. Prediction, prevention and management of postresection liver failure. Br. J. Surg. 2011;98:1188–1200. doi: 10.1002/bjs.7630.   
64. Benedetti Cacciaguerra A., Görgec B., Lanari J., Cipriani F., Russolillo N., Mocchegiani F., Zimmitti G., Alseidi A., Ruzzenente A., Edwin B., et al. Outcome of major hepatectomy in cirrhotic patients; does surgical approach matter? A propensity score matched analysis. J. Hepatobiliary Pancreat. Sci. 2021 doi: 10.1002/jhbp.1087.   
65. Cipriani F., Alzoubi M., Fuks D., Ratti F., Kawai T., Berardi G., Barkhatov L., Lainas P., Van der Poel M., Faoury M., et al. Pure laparoscopic versus open hemihepatectomy: A critical assessment and realistic expectations—A propensity score-based analysis of right and left hemihepatectomies from nine European tertiary referral centers. J. Hepatobiliary Pancreat. Sci. 2020;27:3–15. doi: 10.1002/jhbp.662.   
66. Aziz H., Wang J.C., Genyk Y., Sheikh M.R. Comprehensive analysis of laparoscopic, robotic, and open hepatectomy outcomes using the nationwide readmissions database. J. Robot. Surg. 2022;16:401–407. doi: 10.1007/s11701-021-01257-w.   
67. Heinrich S., Seehofer D., Corvinus F., Tripke V., Huber T., Hüttl F., Penzkofer L., Mittler J., Abu Hilal M., Lang H. Vorteile und Entwicklungspotenziale der laparoskopischen Leberchirurgie. [Advantages and future perspectives of laparoscopic liver surgery] Chirurg. 2021;92:542–549. doi: 10.1007/s00104-020-01288-3.   
68. van der Heijde N., Ratti F., Aldrighetti L., Benedetti Cacciaguerra A., Can M.F., D’Hondt M., Di Benedetto F., Ivanecz A., Magistri P., Menon K., et al. Laparoscopic versus open right posterior sectionectomy: An international, multicenter, propensity score-matched evaluation. Surg Endosc. 2021;35:6139–6149. doi: 10.1007/s00464-020-08109-y.   
69. Nota C.L., Woo Y., Raoof M., Boerner T., Molenaar I.Q., Choi G.H., Kingham T.P., Latorre K., Borel Rinkes I.H.M., Hagendoorn J., et al. Robotic Versus Open Minor Liver Resections of the Posterosuperior Segments: A Multinational, Propensity Score-Matched Study. Ann. Surg. Oncol. 2019;26:583–590. doi: 10.1245/s10434-018-6928-1.   
70. Stewart C., Wong P., Warner S., Raoof M., Singh G., Fong Y., Melstrom L. Robotic minor hepatectomy: Optimizing outcomes and cost of care. HPB. 2021;23:700–706. doi: 10.1016/j.hpb.2020.09.005.   
71. Qiu J., Chen S., Chengyou D. A systematic review of robotic-assisted liver resection and meta-analysis of robotic versus laparoscopic hepatectomy for hepatic neoplasms. Surg Endosc. 2016;30:862–875. doi: 10.1007/s00464-015-4306-7.   
72. Hu Y., Guo K., Xu J., Xia T., Wang T., Liu N., Fu Y. Robotic versus laparoscopic hepatectomy for malignancy: A systematic review and meta-analysis. Asian J. Surg. 2021;44:615–628. doi: 10.1016/j.asjsur.2020.12.016.   
73. Jackson N.R., Hauch A., Hu T., Buell J.F., Slakey D.P., Kandil E. The safety and efficacy of approaches to liver resection: A meta-analysis. JSLS. 2015;19:e2014.00186. doi: 10.4293/JSLS.2014.00186.   
74. Abu Hilal M., Hamdan M., Di Fabio F., Pearce N.W., Johnson C.D. Laparoscopic versus open distal pancreatectomy: A clinical and cost-effectiveness study. Surg. Endosc. 2012;26:1670–1674. doi: 10.1007/s00464-011-2090-6.   
75. Abu Hilal M., Di Fabio F., Syed S., Wiltshire R., Dimovska E., Turner D., Primrose J.N., Pearce N.W. Assessment of the financial implications for laparoscopic liver surgery: A single-centre UK cost analysis for minor and major hepatectomy. Surg. Endosc. 2013;27:2542–2550. doi: 10.1007/s00464-012-2779-1.   
76. Wu C.Y., Chen P.D., Chou W.H., Liang J.T., Huang C.S., Wu Y.M. Is robotic hepatectomy cost-effective? In view of patient-reported outcomes. Asian J. Surg. 2019;42:543–550. doi: 10.1016/j.asjsur.2018.12.010.   
77. Beard R.E., Khan S., Troisi R.I., Montalti R., Vanlander A., Fong Y., Kingham T.P., Boerner T., Berber E., Kahramangil B., et al. Long-Term and Oncologic Outcomes of Robotic Versus Laparoscopic Liver Resection for Metastatic Colorectal Cancer: A Multicenter, Propensity Score Matching Analysis. World J. Surg. 2020;44:887–895. doi: 10.1007/s00268-019-05270-x.   
78. Montalti R., Berardi G., Patriti A., Vivarelli M., Troisi R.I. Outcomes of robotic vs laparoscopic hepatectomy: A systematic review and meta-analysis. World J. Gastroenterol. 2015;21:8441–8451. doi: 10.3748/wjg.v21.i27.8441.   
79. Guan R., Chen Y., Yang K., Ma D., Gong X., Shen B., Peng C. Clinical efficacy of robot-assisted versus laparoscopic liver resection: A meta-analysis. Asian J. Surg. 2019;42:19–31. doi: 10.1016/j.asjsur.2018.05.008.   
80. Duarte V.C., Coelho F.F., Valverde A., Danoussou D., Kruger J.A.P., Zuber K., Fonseca G.M., Jeismann V.B., Herman P., Lupinacci R.M. Minimally invasive versus open right hepatectomy: Comparative study with propensity score matching analysis. BMC Surg. 2020;20:260. doi: 10.1186/s12893-020-00919-0.   
81. Fonseca G.M., de Mello E.S., Faraj S.F., Kruger J.A.P., Jeismann V.B., Coelho F.F., Alves V.A.F., Herman P. Histopathological factors versus margin size in single colorectal liver metastases: Does a 1-cm margin size matter? Scand. J. Surg. 2022;111:14574969211069329. doi: 10.1177/14574969211069329.   
82. Halls M.C., Cherqui D., Taylor M.A., Primrose J.N., Abu Hilal M., Collaborators of The Difficulty of Laparoscopic Liver Surgery Survey Are the current difficulty scores for laparoscopic liver surgery telling the whole story? An international survey and recommendations for the future. HPB. 2018;20:231–236. doi: 10.1016/j.hpb.2017.08.028.   
83. Cipriani F., Fiorentini G., Magistri P., Fontani A., Menonna F., Annecchiarico M., Lauterio A., De Carlis L., Coratti A., Boggi U., et al. Pure laparoscopic versus robotic liver resections: Multicentric propensity score-based analysis with stratification according to difficulty scores. J. Hepatobiliary Pancreat. Sci. 2021 doi: 10.1002/jhbp.1022.   
84. Perrakis A., Rahimli M., Gumbs A.A., Negrini V., Andric M., Stockheim J., Wex C., Lorenz E., Arend J., Franz M., et al. Three-Device (3D) Technique for Liver Parenchyma Dissection in Robotic Liver Surgery. J. Clin. Med. 2021;10:5265. doi: 10.3390/jcm10225265.   
85. Rahimli M., Perrakis A., Schellerer V., Gumbs A., Lorenz E., Franz M., Arend J., Negrini V.R., Croner R.S. Robotic and laparoscopic liver surgery for colorectal liver metastases: An experience from a German Academic Center. World J. Surg. Oncol. 2020;18:333. doi: 10.1186/s12957-020-02113-1.   
86. Magistri P., Tarantino G., Guidetti C., Assirati G., Olivieri T., Ballarin R., Coratti A., Di Benedetto F. Laparoscopic versus robotic surgery for hepatocellular carcinoma: The first 46 consecutive cases. J. Surg. Res. 2017;217:92–99. doi: 10.1016/j.jss.2017.05.005.   
87. Rahimli M., Perrakis A., Andric M., Stockheim J., Franz M., Arend J., Al-Madhi S., Abu Hilal M., Gumbs A.A., Croner R.S. Does Robotic Liver Surgery Enhance R0 Results in Liver Malignancies during Minimally Invasive Liver Surgery?—A Systematic Review and Meta-Analysis. Cancers. 2022;14:3360. doi: 10.3390/cancers14143360.   
88. Zwart M.J.W., Görgec B., Arabiyat A., Nota C.L.M., van der Poel M.J., Fichtinger R.S., Berrevoet F., van Dam R.M., Aldrighetti L., Fuks D., et al. Pan-European survey on the implementation of robotic and laparoscopic minimally invasive liver surgery. HPB. 2022;24:322–331. doi: 10.1016/j.hpb.2021.08.939.   
89. Kuo L.J., Ngu J.C., Lin Y.K., Chen C.C., Tang Y.H. A pilot study comparing ergonomics in laparoscopy and robotics: Beyond anecdotes, and subjective claims. J. Surg. Case Rep. 2020;2020:rjaa005. doi: 10.1093/jscr/rjaa005.   
90. Shugaba A., Lambert J.E., Bampouras T.M., Nuttall H.E., Gaffney C.J., Subar D.A. Should All Minimal Access Surgery Be Robot-Assisted? A Systematic Review into the Musculoskeletal and Cognitive Demands of Laparoscopic and Robot-Assisted Laparoscopic Surgery. J. Gastrointest. Surg. 2022;26:1520–1530. doi: 10.1007/s11605-022-05319-8.   
91. Rehan M., Saleem M.M., Tiwana M.I., Shakoor R.I., Cheung R. A Soft Multi-Axis High Force Range Magnetic Tactile Sensor for Force Feedback in Robotic Surgical Systems. Sensors. 2022;22:3500. doi: 10.3390/s22093500.   
92. Cubisino A., Dreifuss N.H., Schlottmann F., Baz C., Mangano A., Masrur M.A., Bianco F.M. Robotic Single Port (SP) Anti-Reflux Surgery: I nitial worldwide experience of two cases with a novel surgical approach to treat gastroesophageal reflux disease. Int. J. Med. Robot. 2022:e2437. doi: 10.1002/rcs.2437.   
93. Kim W.J., Park P.J., Choi S.B., Kim W.B. Case report of pure single-port robotic left lateral sectionectomy using the da Vinci SP system. Medicine. 2021;100:e28248. doi: 10.1097/MD.0000000000028248.   
94. Zwart M.J.W., Nota C.L.M., de Rooij T., van Hilst J., Te Riele W.W., van Santvoort H.C., Hagendoorn J., Rinkes I.H.M.B., van Dam J.L., Latenstein A.E.J., et al. Outcomes of a Multicenter Training Program in Robotic Pancreatoduodenectomy (LAELAPS-3) Ann. Surg. 2021 doi: 10.1097/SLA.0000000000004783.   
95. Abe Y., Itano O., Kitago M., Shinoda M., Yagi H., Hibi T., Takano K., Chiba N., Kawachi S., Shimazu M., et al. Computer assisted surgery, preoperative planning, and navigation for pancreatic cancer. J. Hepatobiliary Pancreat. Sci. 2014;21:251–255. doi: 10.1002/jhbp.84.   
96. Natarajan P., Frenzel J.C., Smaltz D. Demystifying Big Data and Machine Learning for Healthcare. CRC Press; Boca Raton, FL, USA: 2021.
97. Phutane P., Buc E., Poirot K., Ozgur E., Pezet D., Bartoli A., Le Roy B. Preliminary trial of augmented reality performed on a laparoscopic left hepatectomy. Surg. Endosc. 2018;32:514–515. doi: 10.1007/s00464-017-5733-4.   
98. Liebeskind A.Y., Chen A.C., Dhruva S.S., Sedrakyan A. A 510(k) ancestry of robotic surgical systems. Int. J. Surg. 2022;98:106229. doi: 10.1016/j.ijsu.2022.106229.   
99. Gosrisirikul C., Don Chang K., Raheem A.A., Rha K.H. New era of robotic surgical systems. Asian J. Endosc. Surg. 2018;11:291–299. doi: 10.1111/ases.12660.   
100. Kang I., Hwang H.K., Lee W.J., Kang C.M. First experience of pancreaticoduodenectomy using Revo-i in a patient with insulinoma. Ann. Hepatobiliary Pancreat. Surg. 2020;24:104–108. doi: 10.14701/ahbps.2020.24.1.104.   
101. Morton J., Hardwick R.H., Tilney H.S., Gudgeon A.M., Jah A., Stevens L., Marecik S., Slack M. Preclinical evaluation of the versius surgical system, a new robot-assisted surgical device for use in minimal access general and colorectal procedures. Surg. Endosc. 2021;35:2169–2177. doi: 10.1007/s00464-020-07622-4.   
102. Seeliger B., Diana M., Ruurda J.P., Konstantinidis K.M., Marescaux J., Swanström L.L. Enabling single-site laparoscopy: The SPORT platform. Surg. Endosc. 2019;33:3696–3703. doi: 10.1007/s00464-018-06658-x.   
103. Samalavicius N.E., Janusonis V., Siaulys R., Jasėnas M., Deduchovas O., Venckus R., Ezerskiene V., Paskeviciute R., Klimaviciute G. Robotic surgery using Senhance® robotic platform: Single center experience with first 100 cases. J. Robot. Surg. 2020;14:371–376. doi: 10.1007/s11701-019-01000-6.   
您需要登录后才可以回帖 登录 | 注册

本版积分规则

丁香叶与你快乐分享

微信公众号

管理员微信

服务时间:8:30-21:30

站长微信/QQ

← 微信/微信群

← QQ

Copyright © 2013-2025 丁香叶 Powered by dxye.com  手机版 
快速回复 返回列表 返回顶部