参考资料
1. Chen K., Zhang J., Beeraka N.M., Sinelnikov M.Y., Zhang X., Cao Y., Lu P. Robot-Assisted Minimally Invasive Breast Surgery: Recent Evidence with Comparative Clinical Outcomes. J. Clin. Med. 2022;11:1827. doi: 10.3390/jcm11071827.
2. Li J.J., Zhang Z.B., Xu S.Y., Zhang C.R., Yang X.F., Duan Y.X. Robotic versus Laparoscopic Total Mesorectal Excision Surgery in Rectal Cancer: Analysis of Medium-Term Oncological Outcomes. Surg. Innov. 2022:15533506221100283. doi: 10.1177/15533506221100283.
3. Kamarajah S.K., Griffiths E.A., Phillips A.W., Ruurda J., van Hillegersberg R., Hofstetter W.L., Markar S.R. Robotic Techniques in Esophagogastric Cancer Surgery: An Assessment of Short- and Long-Term Clinical Outcomes. Ann. Surg. Oncol. 2022;29:2812–2825. doi: 10.1245/s10434-021-11082-y.
4. Zhang X.P., Xu S., Hu M.G., Zhao Z.M., Wang Z.H., Zhao G.D., Li C.G., Tan X.L., Liu R. Short- and long-term outcomes after robotic and open liver resection for elderly patients with hepatocellular carcinoma: A propensity score-matched study. Surg. Endosc. 2022 doi: 10.1007/s00464-022-09236-4.
5. Shapera E.A., Ross S., Syblis C., Crespo K., Rosemurgy A., Sucandy I. Analysis of Oncological Outcomes After Robotic Liver Resection for Intrahepatic Cholangiocarcinoma. Am. Surg. 2022 doi: 10.1177/00031348221093933. ahead of print .
6. Robles-Campos R., Lopez-Lopez V., Brusadin R., Lopez-Conesa A., Gil-Vazquez P.J., Navarro-Barrios Á., Parrilla P. Open versus minimally invasive liver surgery for colorectal liver metastases (LapOpHuva): A prospective randomized controlled trial. Surg. Endosc. 2019;33:3926–3936. doi: 10.1007/s00464-019-06679-0.
7. Hawksworth J., Radkani P., Nguyen B., Belyayev L., Llore N., Holzner M., Mateo R., Meslar E., Winslow E., Fishbein T. Improving safety of robotic major hepatectomy with extrahepatic inflow control and laparoscopic CUSA parenchymal transection: Technical description and initial experience. Surg. Endosc. 2022;36:3270–3276. doi: 10.1007/s00464-021-08639-z.
8. Ryska M., Fronek J., Rudis J., Jurenka B., Langer D., Pudil J. Manuální a robotická laparoskopická resekce jater. Dve kazuistiky. [Manual and robotic laparoscopic liver resection. Two case-reviews] Rozhl. Chir. 2006;85:511–516.
9. Eubanks S. The role of laparoscopy in diagnosis and treatment of primary or metastatic liver cancer. Semin. Surg. Oncol. 1994;10:404–410. doi: 10.1002/ssu.2980100607.
10. Durán M., Briceño J., Padial A., Anelli F.M., Sánchez-Hidalgo J.M., Ayllón M.D., Calleja-Lozano R., García-Gaitan C. Short-term outcomes of robotic liver resection: An initial single-institution experience. World J. Hepatol. 2022;14:224–233.
11. Varghese C.T., Chandran B., Gopalakrishnan U., Nair K., Mallick S., Mathew J.S., Sivasankara Pillai Thankamony Amma B., Balakrishnan D., Othiyil Vayoth S., Sudhindran S. Extended criteria donors for robotic right hepatectomy: A propensity score matched analysis. J. Hepatobiliary Pancreat. Sci. 2022;29:874–883. doi: 10.1002/jhbp.1145.
12. Di Benedetto F., Magistri P., Guerrini G.P., Di Sandro S. Robotic liver partition and portal vein embolization for staged hepatectomy for perihilar cholangiocarcinoma. Updates Surg. 2022;74:773–777. doi: 10.1007/s13304-021-01209-x.
13. Berardi G., Aghayan D., Fretland Å.A., Elberm H., Cipriani F., Spagnoli A., Montalti R., Ceelen W.P., Aldrighetti L., Abu Hilal M., et al. Multicentre analysis of the learning curve for laparoscopic liver resection of the posterosuperior segments. Br. J. Surg. 2019;106:1512–1522. doi: 10.1002/bjs.11286.
14. Halls M.C., Alseidi A., Berardi G., Cipriani F., Van der Poel M., Davila D., Ciria R., Besselink M., D’Hondt M., Dagher I., et al. A Comparison of the Learning Curves of Laparoscopic Liver Surgeons in Differing Stages of the IDEAL Paradigm of Surgical Innovation: Standing on the Shoulders of Pioneers. Ann. Surg. 2019;269:221–228. doi: 10.1097/SLA.0000000000002996.
15. de Rooij T., Cipriani F., Rawashdeh M., van Dieren S., Barbaro S., Abuawwad M., van Hilst J., Fontana M., Besselink M.G., Abu Hilal M. Single-Surgeon Learning Curve in 111 Laparoscopic Distal Pancreatectomies: Does Operative Time Tell the Whole Story? J. Am. Coll. Surg. 2017;224:826–832.e1. doi: 10.1016/j.jamcollsurg.2017.01.023.
16. Hopper A.N., Jamison M.H., Lewis W.G. Learning curves in surgical practice. Postgrad. Med. J. 2007;83:777–779. doi: 10.1136/pgmj.2007.057190.
17. Müller P.C., Kuemmerli C., Cizmic A., Sinz S., Probst P., de Santibanes M., Shrikhande S.V., Tschuor C., Loos M., Mehrabi A., et al. Learning Curves in Open, Laparoscopic, and Robotic Pancreatic Surgery. Ann. Surg. Open. 2022;3:e111. doi: 10.1097/AS9.0000000000000111.
18. O'Connor V.V., Vuong B., Yang S.T., DiFronzo A. Robotic Minor Hepatectomy Offers a Favorable Learning Curve and May Result in Superior Perioperative Outcomes Compared with Laparoscopic Approach. Am. Surg. 2017;83:1085–1088. doi: 10.1177/000313481708301014.
19. Chen P.D., Wu C.Y., Hu R.H., Chen C.N., Yuan R.H., Liang J.T., Lai H.S., Wu Y.M. Robotic major hepatectomy: Is there a learning curve? Surgery. 2017;161:642–649. doi: 10.1016/j.surg.2016.09.025.
20. Abu Hilal M., Aldrighetti L., Dagher I., Edwin B., Troisi R.I., Alikhanov R., Aroori S., Belli G., Besselink M., Briceno J., et al. The Southampton Consensus Guidelines for Laparoscopic Liver Surgery: From Indication to Implementation. Ann. Surg. 2018;268:11–18. doi: 10.1097/SLA.0000000000002524.
21. Gall T.M.H., Alrawashdeh W., Soomro N., White S., Jiao L.R. Shortening surgical training through robotics: Randomized clinical trial of laparoscopic versus robotic surgical learning curves. BJS Open. 2020;4:1100–1108. doi: 10.1002/bjs5.50353.
22. Chandra V., Nehra D., Parent R., Woo R., Reyes R., Hernandez-Boussard T., Dutta S. A comparison of laparoscopic and robotic assisted suturing performance by experts and novices. Surgery. 2010;147:830–839. doi: 10.1016/j.surg.2009.11.002.
23. Aloia T.A., Fahy B.N., Fischer C.P., Jones S.L., Duchini A., Galati J., Gaber A.O., Ghobrial R.M., Bass B.L. Predicting poor outcome following hepatectomy: Analysis of 2313 hepatectomies in the NSQIP database. HPB. 2009;11:510–515. doi: 10.1111/j.1477-2574.2009.00095.x.
24. Tranchart H., Gaillard M., Chirica M., Ferretti S., Perlemuter G., Naveau S., Dagher I. Multivariate analysis of risk factors for postoperative complications after laparoscopic liver resection. Surg. Endosc. 2015;29:2538–2544. doi: 10.1007/s00464-014-3965-0.
25. Nobili C., Marzano E., Oussoultzoglou E., Rosso E., Addeo P., Bachellier P., Jaeck D., Pessaux P. Multivariate analysis of risk factors for pulmonary complications after hepatic resection. Ann. Surg. 2012;255:540–550. doi: 10.1097/SLA.0b013e3182485857.
26. Spampinato M.G., Coratti A., Bianco L., Caniglia F., Laurenzi A., Puleo F., Ettorre G.M., Boggi U. Perioperative outcomes of laparoscopic and robot-assisted major hepatectomies: An Italian multi-institutional comparative study. Surg. Endosc. 2014;28:2973–2979. doi: 10.1007/s00464-014-3560-4.
27. Tsung A., Geller D.A., Sukato D.C., Sabbaghian S., Tohme S., Steel J., Marsh W., Reddy S.K., Bartlett D.L. Robotic versus laparoscopic hepatectomy: A matched comparison. Ann. Surg. 2014;259:549–555. doi: 10.1097/SLA.0000000000000250.
28. Wu Y.M., Hu R.H., Lai H.S., Lee P.H. Robotic-assisted minimally invasive liver resection. Asian J. Surg. 2014;37:53–57. doi: 10.1016/j.asjsur.2014.01.015.
29. Choi G.H., Choi S.H., Kim S.H., Hwang H.K., Kang C.M., Choi J.S., Lee W.J. Robotic liver resection: Technique and results of 30 consecutive procedures. Surg. Endosc. 2012;26:2247–2258. doi: 10.1007/s00464-012-2168-9.
30. Lai E.C., Yang G.P., Tang C.N. Robot-assisted laparoscopic liver resection for hepatocellular carcinoma: Short-term outcome. Am. J. Surg. 2013;205:697–702. doi: 10.1016/j.amjsurg.2012.08.015.
31. Giulianotti P.C., Coratti A., Sbrana F., Addeo P., Bianco F.M., Buchs N.C., Annechiarico M., Benedetti E. Robotic liver surgery: Results for 70 resections. Surgery. 2011;149:29–39. doi: 10.1016/j.surg.2010.04.002.
32. Troisi R.I., Patriti A., Montalti R., Casciola L. Robot assistance in liver surgery: A real advantage over a fully laparoscopic approach? Results of a comparative bi-institutional analysis. Int. J. Med. Robot. 2013;9:160–166. doi: 10.1002/rcs.1495.
33. Tranchart H., Ceribelli C., Ferretti S., Dagher I., Patriti A. Traditional versus robot-assisted full laparoscopic liver resection: A matched-pair comparative study. World. J. Surg. 2014;38:2904–2909. doi: 10.1007/s00268-014-2679-8.
34. Packiam V., Bartlett D.L., Tohme S., Reddy S., Marsh J.W., Geller D.A., Tsung A. Minimally invasive liver resection: Robotic versus laparoscopic left lateral sectionectomy. J. Gastrointest. Surg. 2012;16:2233–2238. doi: 10.1007/s11605-012-2040-1.
35. Yu Y.D., Kim K.H., Jung D.H., Namkoong J.M., Yoon S.Y., Jung S.W., Lee S.K., Lee S.G. Robotic versus laparoscopic liver resection: A comparative study from a single center. Langenbecks Arch. Surg. 2014;399:1039–1045. doi: 10.1007/s00423-014-1238-y.
36. Kamarajah S.K., Bundred J., Manas D., Jiao L., Hilal M.A., White S.A. Robotic versus conventional laparoscopic liver resections: A systematic review and meta-analysis. Scand. J. Surg. 2021;110:290–300. doi: 10.1177/1457496920925637.
37. Bennett S., Baker L.K., Martel G., Shorr R., Pawlik T.M., Tinmouth A., McIsaac D.I., Hébert P.C., Karanicolas P.J., McIntyre L., et al. The impact of perioperative red blood cell transfusions in patients undergoing liver resection: A systematic review. HPB. 2017;19:321–330. doi: 10.1016/j.hpb.2016.12.008.
38. Nösser M., Feldbrügge L., Pratschke J. Minimally invasive liver surgery: The Charité experience. Turk. J. Surg. 2021;37:199–206. doi: 10.47717/turkjsurg.2021.1011.
39. D’Hondt M., Devooght A., Willems E., Wicherts D., De Meyere C., Parmentier I., Provoost A., Pottel H., Verslype C. Transition from laparoscopic to robotic liver surgery: Clinical outcomes, learning curve effect, and cost-effectiveness. J. Robot. Surg. 2022 doi: 10.1007/s11701-022-01405-w.
40. Kadam P., Sutcliffe R.P., Scatton O., Sucandy I., Kingham T.P., Liu R., Choi G.H., Syn N.L., Gastaca M., Choi S.H., et al. An international multicenter propensity-score matched and coarsened-exact matched analysis comparing robotic versus laparoscopic partial liver resections of the anterolateral segments. J. Hepatobiliary Pancreat. Sci. 2022 doi: 10.1002/jhbp.1149.
41. Masetti M., Fallani G., Ratti F., Ferrero A., Giuliante F., Cillo U., Guglielmi A., Ettorre G.M., Torzilli G., Vincenti L., et al. Minimally invasive treatment of colorectal liver metastases: Does robotic surgery provide any technical advantages over laparoscopy? A multicenter analysis from the IGoMILS (Italian Group of Minimally Invasive Liver Surgery) registry. Updates Surg. 2022;74:535–545. doi: 10.1007/s13304-022-01245-1.
42. Hu M., Liu Y., Li C., Wang G., Yin Z., Lau W.Y., Liu R. Robotic versus laparoscopic liver resection in complex cases of left lateral sectionectomy. Int. J. Surg. 2019;67:54–60. doi: 10.1016/j.ijsu.2019.05.008.
43. Blikkendaal M.D., Twijnstra A.R., Stiggelbout A.M., Beerlage H.P., Bemelman W.A., Jansen F.W. Achieving consensus on the definition of conversion to laparotomy: A Delphi study among general surgeons, gynecologists, and urologists. Surg. Endosc. 2013;27:4631–4639. doi: 10.1007/s00464-013-3086-1.
44. Yang C., Wexner S.D., Safar B., Jobanputra S., Jin H., Li V.K., Nogueras J.J., Weiss E.G., Sands D.R. Conversion in laparoscopic surgery: Does intraoperative complication influence outcome? Surg. Endosc. 2009;23:2454–2458. doi: 10.1007/s00464-009-0414-6.
45. de Neree Tot Babberich M.P.M., van Groningen J.T., Dekker E., Wiggers T., Wouters M.W.J.M., Bemelman W.A., Tanis P.J., Dutch Surgical Colorectal Audit Laparoscopic conversion in colorectal cancer surgery; is there any improvement over time at a population level? Surg. Endosc. 2018;32:3234–3246. doi: 10.1007/s00464-018-6042-2.
46. Halls M.C., Cipriani F., Berardi G., Barkhatov L., Lainas P., Alzoubi M., D’Hondt M., Rotellar F., Dagher I., Aldrighetti L., et al. Conversion for Unfavorable Intraoperative Events Results in Significantly Worse Outcomes During Laparoscopic Liver Resection: Lessons Learned from a Multicenter Review of 2861 Cases. Ann. Surg. 2018;268:1051–1057. doi: 10.1097/SLA.0000000000002332.
47. Crippa J., Grass F., Achilli P., Mathis K.L., Kelley S.R., Merchea A., Colibaseanu D.T., Larson D.W. Risk factors for conversion in laparoscopic and robotic rectal cancer surgery. Br. J. Surg. 2020;107:560–566. doi: 10.1002/bjs.11435.
48. Lof S., Korrel M., van Hilst J., Moekotte A.L., Bassi C., Butturini G., Boggi U., Dokmak S., Edwin B., Falconi M., et al. Outcomes of Elective and Emergency Conversion in Minimally Invasive Distal Pancreatectomy for Pancreatic Ductal Adenocarcinoma: An International Multicenter Propensity Score-matched Study. Ann. Surg. 2021;274:e1001–e1007. doi: 10.1097/SLA.0000000000003717.
49. Lof S., Vissers F.L., Klompmaker S., Berti S., Boggi U., Coratti A., Dokmak S., Fara R., Festen S., D’Hondt M., et al. European consortium on Minimally Invasive Pancreatic Surgery (E-MIPS). Risk of conversion to open surgery during robotic and laparoscopic pancreatoduodenectomy and effect on outcomes: International propensity score-matched comparison study. Br. J. Surg. 2021;108:80–87. doi: 10.1093/bjs/znaa026.
50. Shah P.C., de Groot A., Cerfolio R., Huang W.C., Huang K., Song C., Li Y., Kreaden U., Oh D.S. Impact of type of minimally invasive approach on open conversions across ten common procedures in different specialties. Surg. Endosc. 2022;36:6067–6075. doi: 10.1007/s00464-022-09073-5. Erratum in: Surg. Endosc. 2022, 36, 7075.
51. Gheza F., Esposito S., Gruessner S., Mangano A., Fernandes E., Giulianotti P.C. Reasons for open conversion in robotic liver surgery: A systematic review with pooled analysis of more than 1000 patients. Int. J. Med. Robot. 2019;15:e1976. doi: 10.1002/rcs.1976.
52. Liu R., Wakabayashi G., Kim H.J., Choi G.H., Yiengpruksawan A., Fong Y., He J., Boggi U., Troisi R.I., Efanov M., et al. International consensus statement on robotic hepatectomy surgery in 2018. World J. Gastroenterol. 2019;25:1432–1444. doi: 10.3748/wjg.v25.i12.1432.
53. Yang T., Zhang J., Lu J.H., Yang G.S., Wu M.C., Yu W.F. Risk factors influencing postoperative outcomes of major hepatic resection of hepatocellular carcinoma for patients with underlying liver diseases. World J. Surg. 2011;35:2073–2082. doi: 10.1007/s00268-011-1161-0.
54. Kyoden Y., Imamura H., Sano K., Beck Y., Sugawara Y., Kokudo N., Makuuchi M. Value of prophylactic abdominal drainage in 1269 consecutive cases of elective liver resection. J. Hepatobiliary Pancreat. Sci. 2010;17:186–192. doi: 10.1007/s00534-009-0161-z.
55. Ishii T., Hatano E., Furuyama H., Manaka D., Terajima H., Uemoto S. Preventive Measures for Postoperative Bile Leakage After Central Hepatectomy: A Multicenter, Prospective, Observational Study of 101 Patients. World J. Surg. 2016;40:1720–1728. doi: 10.1007/s00268-016-3453-x.
56. Capussotti L., Ferrero A., Viganò L., Sgotto E., Muratore A., Polastri R. Bile leakage and liver resection: Where is the risk? Arch. Surg. 2006;141:690–695. doi: 10.1001/archsurg.141.7.690.
57. Abu Hilal M., Tschuor C., Kuemmerli C., López-Ben S., Lesurtel M., Rotellar F. Laparoscopic posterior segmental resections: How I do it: Tips and pitfalls. Int. J. Surg. 2020;82S:178–186. doi: 10.1016/j.ijsu.2020.06.052.
58. Cipriani F., Shelat V.G., Rawashdeh M., Francone E., Aldrighetti L., Takhar A., Armstrong T., Pearce N.W., Abu Hilal M. Laparoscopic Parenchymal-Sparing Resections for Nonperipheral Liver Lesions, the Diamond Technique: Technical Aspects, Clinical Outcomes, and Oncologic Efficiency. J. Am. Coll. Surg. 2015;221:265–272. doi: 10.1016/j.jamcollsurg.2015.03.029.
59. Martin A.N., Narayanan S., Turrentine F.E., Bauer T.W., Adams R.B., Stukenborg G.J., Zaydfudim V.M. Clinical Factors and Postoperative Impact of Bile Leak After Liver Resection. J. Gastrointest. Surg. 2018;22:661–667. doi: 10.1007/s11605-017-3650-4.
60. Görgec B., Cacciaguerra A.B., Aldrighetti L.A., Ferrero A., Cillo U., Edwin B., Vivarelli M., Lopez-Ben S., Besselink M.G., Abu Hilal M., et al. Incidence and Clinical Impact of Bile Leakage after Laparoscopic and Open Liver Resection: An International Multicenter Propensity Score-Matched Study of 13,379 Patients. J. Am. Coll. Surg. 2022;234:99–112. doi: 10.1097/XCS.0000000000000039.
61. Tee M.C., Chen L., Peightal D., Franko J., Kim P.T., Brahmbhatt R.D., Raman S., Scudamore C.H., Chung S.W., Segedi M. Minimally invasive hepatectomy is associated with decreased morbidity and resource utilization in the elderly. Surg. Endosc. 2020;34:5030–5040. doi: 10.1007/s00464-019-07298-5.
62. Rahbari N.N., Garden O.J., Padbury R., Brooke-Smith M., Crawford M., Adam R., Koch M., Makuuchi M., Dematteo R.P., Christophi C., et al. Post hepatectomy liver failure: A definition and grading by the International Study Group of Liver Surgery (ISGLS) Surgery. 2011;149:713–724. doi: 10.1016/j.surg.2010.10.001.
63. Hammond J.S., Guha I.N., Beckingham I.J., Lobo D.N. Prediction, prevention and management of postresection liver failure. Br. J. Surg. 2011;98:1188–1200. doi: 10.1002/bjs.7630.
64. Benedetti Cacciaguerra A., Görgec B., Lanari J., Cipriani F., Russolillo N., Mocchegiani F., Zimmitti G., Alseidi A., Ruzzenente A., Edwin B., et al. Outcome of major hepatectomy in cirrhotic patients; does surgical approach matter? A propensity score matched analysis. J. Hepatobiliary Pancreat. Sci. 2021 doi: 10.1002/jhbp.1087.
65. Cipriani F., Alzoubi M., Fuks D., Ratti F., Kawai T., Berardi G., Barkhatov L., Lainas P., Van der Poel M., Faoury M., et al. Pure laparoscopic versus open hemihepatectomy: A critical assessment and realistic expectations—A propensity score-based analysis of right and left hemihepatectomies from nine European tertiary referral centers. J. Hepatobiliary Pancreat. Sci. 2020;27:3–15. doi: 10.1002/jhbp.662.
66. Aziz H., Wang J.C., Genyk Y., Sheikh M.R. Comprehensive analysis of laparoscopic, robotic, and open hepatectomy outcomes using the nationwide readmissions database. J. Robot. Surg. 2022;16:401–407. doi: 10.1007/s11701-021-01257-w.
67. Heinrich S., Seehofer D., Corvinus F., Tripke V., Huber T., Hüttl F., Penzkofer L., Mittler J., Abu Hilal M., Lang H. Vorteile und Entwicklungspotenziale der laparoskopischen Leberchirurgie. [Advantages and future perspectives of laparoscopic liver surgery] Chirurg. 2021;92:542–549. doi: 10.1007/s00104-020-01288-3.
68. van der Heijde N., Ratti F., Aldrighetti L., Benedetti Cacciaguerra A., Can M.F., D’Hondt M., Di Benedetto F., Ivanecz A., Magistri P., Menon K., et al. Laparoscopic versus open right posterior sectionectomy: An international, multicenter, propensity score-matched evaluation. Surg Endosc. 2021;35:6139–6149. doi: 10.1007/s00464-020-08109-y.
69. Nota C.L., Woo Y., Raoof M., Boerner T., Molenaar I.Q., Choi G.H., Kingham T.P., Latorre K., Borel Rinkes I.H.M., Hagendoorn J., et al. Robotic Versus Open Minor Liver Resections of the Posterosuperior Segments: A Multinational, Propensity Score-Matched Study. Ann. Surg. Oncol. 2019;26:583–590. doi: 10.1245/s10434-018-6928-1.
70. Stewart C., Wong P., Warner S., Raoof M., Singh G., Fong Y., Melstrom L. Robotic minor hepatectomy: Optimizing outcomes and cost of care. HPB. 2021;23:700–706. doi: 10.1016/j.hpb.2020.09.005.
71. Qiu J., Chen S., Chengyou D. A systematic review of robotic-assisted liver resection and meta-analysis of robotic versus laparoscopic hepatectomy for hepatic neoplasms. Surg Endosc. 2016;30:862–875. doi: 10.1007/s00464-015-4306-7.
72. Hu Y., Guo K., Xu J., Xia T., Wang T., Liu N., Fu Y. Robotic versus laparoscopic hepatectomy for malignancy: A systematic review and meta-analysis. Asian J. Surg. 2021;44:615–628. doi: 10.1016/j.asjsur.2020.12.016.
73. Jackson N.R., Hauch A., Hu T., Buell J.F., Slakey D.P., Kandil E. The safety and efficacy of approaches to liver resection: A meta-analysis. JSLS. 2015;19:e2014.00186. doi: 10.4293/JSLS.2014.00186.
74. Abu Hilal M., Hamdan M., Di Fabio F., Pearce N.W., Johnson C.D. Laparoscopic versus open distal pancreatectomy: A clinical and cost-effectiveness study. Surg. Endosc. 2012;26:1670–1674. doi: 10.1007/s00464-011-2090-6.
75. Abu Hilal M., Di Fabio F., Syed S., Wiltshire R., Dimovska E., Turner D., Primrose J.N., Pearce N.W. Assessment of the financial implications for laparoscopic liver surgery: A single-centre UK cost analysis for minor and major hepatectomy. Surg. Endosc. 2013;27:2542–2550. doi: 10.1007/s00464-012-2779-1.
76. Wu C.Y., Chen P.D., Chou W.H., Liang J.T., Huang C.S., Wu Y.M. Is robotic hepatectomy cost-effective? In view of patient-reported outcomes. Asian J. Surg. 2019;42:543–550. doi: 10.1016/j.asjsur.2018.12.010.
77. Beard R.E., Khan S., Troisi R.I., Montalti R., Vanlander A., Fong Y., Kingham T.P., Boerner T., Berber E., Kahramangil B., et al. Long-Term and Oncologic Outcomes of Robotic Versus Laparoscopic Liver Resection for Metastatic Colorectal Cancer: A Multicenter, Propensity Score Matching Analysis. World J. Surg. 2020;44:887–895. doi: 10.1007/s00268-019-05270-x.
78. Montalti R., Berardi G., Patriti A., Vivarelli M., Troisi R.I. Outcomes of robotic vs laparoscopic hepatectomy: A systematic review and meta-analysis. World J. Gastroenterol. 2015;21:8441–8451. doi: 10.3748/wjg.v21.i27.8441.
79. Guan R., Chen Y., Yang K., Ma D., Gong X., Shen B., Peng C. Clinical efficacy of robot-assisted versus laparoscopic liver resection: A meta-analysis. Asian J. Surg. 2019;42:19–31. doi: 10.1016/j.asjsur.2018.05.008.
80. Duarte V.C., Coelho F.F., Valverde A., Danoussou D., Kruger J.A.P., Zuber K., Fonseca G.M., Jeismann V.B., Herman P., Lupinacci R.M. Minimally invasive versus open right hepatectomy: Comparative study with propensity score matching analysis. BMC Surg. 2020;20:260. doi: 10.1186/s12893-020-00919-0.
81. Fonseca G.M., de Mello E.S., Faraj S.F., Kruger J.A.P., Jeismann V.B., Coelho F.F., Alves V.A.F., Herman P. Histopathological factors versus margin size in single colorectal liver metastases: Does a 1-cm margin size matter? Scand. J. Surg. 2022;111:14574969211069329. doi: 10.1177/14574969211069329.
82. Halls M.C., Cherqui D., Taylor M.A., Primrose J.N., Abu Hilal M., Collaborators of The Difficulty of Laparoscopic Liver Surgery Survey Are the current difficulty scores for laparoscopic liver surgery telling the whole story? An international survey and recommendations for the future. HPB. 2018;20:231–236. doi: 10.1016/j.hpb.2017.08.028.
83. Cipriani F., Fiorentini G., Magistri P., Fontani A., Menonna F., Annecchiarico M., Lauterio A., De Carlis L., Coratti A., Boggi U., et al. Pure laparoscopic versus robotic liver resections: Multicentric propensity score-based analysis with stratification according to difficulty scores. J. Hepatobiliary Pancreat. Sci. 2021 doi: 10.1002/jhbp.1022.
84. Perrakis A., Rahimli M., Gumbs A.A., Negrini V., Andric M., Stockheim J., Wex C., Lorenz E., Arend J., Franz M., et al. Three-Device (3D) Technique for Liver Parenchyma Dissection in Robotic Liver Surgery. J. Clin. Med. 2021;10:5265. doi: 10.3390/jcm10225265.
85. Rahimli M., Perrakis A., Schellerer V., Gumbs A., Lorenz E., Franz M., Arend J., Negrini V.R., Croner R.S. Robotic and laparoscopic liver surgery for colorectal liver metastases: An experience from a German Academic Center. World J. Surg. Oncol. 2020;18:333. doi: 10.1186/s12957-020-02113-1.
86. Magistri P., Tarantino G., Guidetti C., Assirati G., Olivieri T., Ballarin R., Coratti A., Di Benedetto F. Laparoscopic versus robotic surgery for hepatocellular carcinoma: The first 46 consecutive cases. J. Surg. Res. 2017;217:92–99. doi: 10.1016/j.jss.2017.05.005.
87. Rahimli M., Perrakis A., Andric M., Stockheim J., Franz M., Arend J., Al-Madhi S., Abu Hilal M., Gumbs A.A., Croner R.S. Does Robotic Liver Surgery Enhance R0 Results in Liver Malignancies during Minimally Invasive Liver Surgery?—A Systematic Review and Meta-Analysis. Cancers. 2022;14:3360. doi: 10.3390/cancers14143360.
88. Zwart M.J.W., Görgec B., Arabiyat A., Nota C.L.M., van der Poel M.J., Fichtinger R.S., Berrevoet F., van Dam R.M., Aldrighetti L., Fuks D., et al. Pan-European survey on the implementation of robotic and laparoscopic minimally invasive liver surgery. HPB. 2022;24:322–331. doi: 10.1016/j.hpb.2021.08.939.
89. Kuo L.J., Ngu J.C., Lin Y.K., Chen C.C., Tang Y.H. A pilot study comparing ergonomics in laparoscopy and robotics: Beyond anecdotes, and subjective claims. J. Surg. Case Rep. 2020;2020:rjaa005. doi: 10.1093/jscr/rjaa005.
90. Shugaba A., Lambert J.E., Bampouras T.M., Nuttall H.E., Gaffney C.J., Subar D.A. Should All Minimal Access Surgery Be Robot-Assisted? A Systematic Review into the Musculoskeletal and Cognitive Demands of Laparoscopic and Robot-Assisted Laparoscopic Surgery. J. Gastrointest. Surg. 2022;26:1520–1530. doi: 10.1007/s11605-022-05319-8.
91. Rehan M., Saleem M.M., Tiwana M.I., Shakoor R.I., Cheung R. A Soft Multi-Axis High Force Range Magnetic Tactile Sensor for Force Feedback in Robotic Surgical Systems. Sensors. 2022;22:3500. doi: 10.3390/s22093500.
92. Cubisino A., Dreifuss N.H., Schlottmann F., Baz C., Mangano A., Masrur M.A., Bianco F.M. Robotic Single Port (SP) Anti-Reflux Surgery: I nitial worldwide experience of two cases with a novel surgical approach to treat gastroesophageal reflux disease. Int. J. Med. Robot. 2022:e2437. doi: 10.1002/rcs.2437.
93. Kim W.J., Park P.J., Choi S.B., Kim W.B. Case report of pure single-port robotic left lateral sectionectomy using the da Vinci SP system. Medicine. 2021;100:e28248. doi: 10.1097/MD.0000000000028248.
94. Zwart M.J.W., Nota C.L.M., de Rooij T., van Hilst J., Te Riele W.W., van Santvoort H.C., Hagendoorn J., Rinkes I.H.M.B., van Dam J.L., Latenstein A.E.J., et al. Outcomes of a Multicenter Training Program in Robotic Pancreatoduodenectomy (LAELAPS-3) Ann. Surg. 2021 doi: 10.1097/SLA.0000000000004783.
95. Abe Y., Itano O., Kitago M., Shinoda M., Yagi H., Hibi T., Takano K., Chiba N., Kawachi S., Shimazu M., et al. Computer assisted surgery, preoperative planning, and navigation for pancreatic cancer. J. Hepatobiliary Pancreat. Sci. 2014;21:251–255. doi: 10.1002/jhbp.84.
96. Natarajan P., Frenzel J.C., Smaltz D. Demystifying Big Data and Machine Learning for Healthcare. CRC Press; Boca Raton, FL, USA: 2021.
97. Phutane P., Buc E., Poirot K., Ozgur E., Pezet D., Bartoli A., Le Roy B. Preliminary trial of augmented reality performed on a laparoscopic left hepatectomy. Surg. Endosc. 2018;32:514–515. doi: 10.1007/s00464-017-5733-4.
98. Liebeskind A.Y., Chen A.C., Dhruva S.S., Sedrakyan A. A 510(k) ancestry of robotic surgical systems. Int. J. Surg. 2022;98:106229. doi: 10.1016/j.ijsu.2022.106229.
99. Gosrisirikul C., Don Chang K., Raheem A.A., Rha K.H. New era of robotic surgical systems. Asian J. Endosc. Surg. 2018;11:291–299. doi: 10.1111/ases.12660.
100. Kang I., Hwang H.K., Lee W.J., Kang C.M. First experience of pancreaticoduodenectomy using Revo-i in a patient with insulinoma. Ann. Hepatobiliary Pancreat. Surg. 2020;24:104–108. doi: 10.14701/ahbps.2020.24.1.104.
101. Morton J., Hardwick R.H., Tilney H.S., Gudgeon A.M., Jah A., Stevens L., Marecik S., Slack M. Preclinical evaluation of the versius surgical system, a new robot-assisted surgical device for use in minimal access general and colorectal procedures. Surg. Endosc. 2021;35:2169–2177. doi: 10.1007/s00464-020-07622-4.
102. Seeliger B., Diana M., Ruurda J.P., Konstantinidis K.M., Marescaux J., Swanström L.L. Enabling single-site laparoscopy: The SPORT platform. Surg. Endosc. 2019;33:3696–3703. doi: 10.1007/s00464-018-06658-x.
103. Samalavicius N.E., Janusonis V., Siaulys R., Jasėnas M., Deduchovas O., Venckus R., Ezerskiene V., Paskeviciute R., Klimaviciute G. Robotic surgery using Senhance® robotic platform: Single center experience with first 100 cases. J. Robot. Surg. 2020;14:371–376. doi: 10.1007/s11701-019-01000-6. |