参考资料:
1. Shapey J, et al. Intraoperative multispectral and hyperspectral label-free imaging: a systematic review of in vivo clinical studies. J. Biophotonics. 2019 doi: 10.1002/jbio.201800455.
2. Clancy NT, Jones G, Maier-Hein L, Elson DS, Stoyanov D. Surgical spectral imaging. Med. Image Anal. 2020;63:101699. doi: 10.1016/j.media.2020.101699.
3. Baltussen EJM, et al. Hyperspectral imaging for tissue classification, a way toward smart laparoscopic colorectal surgery. J. Biomed. Opt. 2019;24:1–9. doi: 10.1117/1.JBO.24.1.016002.
4. Yoon J, et al. A clinically translatable hyperspectral endoscopy (HySE) system for imaging the gastrointestinal tract. Nat. Commun. 2019;10:1902. doi: 10.1038/s41467-019-09484-4.
5. Köhler H, et al. Laparoscopic system for simultaneous high-resolution video and rapid hyperspectral imaging in the visible and near-infrared spectral range. J. Biomed. Opt. 2020;25:086004. doi: 10.1117/1.JBO.25.8.086004.
6. Barberio M, et al. Intraoperative guidance using hyperspectral imaging: a review for surgeons. Diagnostics. 2021;11:2066. doi: 10.3390/diagnostics11112066.
7. Barberio M, et al. HYPerspectral enhanced reality (HYPER): a physiology-based surgical guidance tool. Surg. Endosc. 2020;34:1736–1744. doi: 10.1007/s00464-019-06959-9.
8. Selka F, et al. Fluorescence-based enhanced reality for colorectal endoscopic surgery. In: Ourselin S, Modat M, et al., editors. Biomedical Image Registration. Springer; 2014. pp. 114–123.
9. Bernhardt S, Nicolau SA, Soler L, Doignon C. The status of augmented reality in laparoscopic surgery as of 2016. Med. Image Anal. 2017;37:66–90. doi: 10.1016/j.media.2017.01.007.
10. Puerto-Souza GA, Cadeddu JA, Mariottini G-L. Toward long-term and accurate augmented-reality for monocular endoscopic videos. IEEE Trans. Biomed. Eng. 2014;61:2609–2620. doi: 10.1109/TBME.2014.2323999.
11. Collins T, et al. Augmented reality guided laparoscopic surgery of the uterus. IEEE Trans. Med. Imaging. 2020 doi: 10.1109/TMI.2020.3027442.
12. Schaefer, S., McPhail, T., Warren, J. Image deformation using moving least squares. In ACM SIGGRAPH 2006 Papers 533–540 (Association for Computing Machinery, 2006). 10.1145/1179352.1141920
13. Tareen, S. A. K., Saleem, Z. A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK. in 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) 1–10 (IEEE, 2018). 10.1109/ICOMET.2018.8346440
14. Alcantarilla, P. F., Bartoli, A., Davison, A. J. KAZE features. in Proceedings of the 12th European conference on computer vision - volume part VI 214–227 (2012). 10.1007/978-3-642-33783-3_16
15. Sieler K, Naber A, Nahm W. An evaluation of image feature detectors based on spatial density and temporal robustness in microsurgical image processing. Curr. Dir. Biomed. Eng. 2019;5:273–276. doi: 10.1515/cdbme-2019-0069.
16. Bailo O, et al. Efficient adaptive non-maximal suppression algorithms for homogeneous spatial keypoint distribution. Pattern Recognit. Lett. 2018;106:53–60. doi: 10.1016/j.patrec.2018.02.020.
17. Suárez I, Sfeir G, Buenaposada JM, Baumela L. BEBLID: Boosted efficient binary local image descriptor. Pattern Recognit. Lett. 2020;133:366–372. doi: 10.1016/j.patrec.2020.04.005.
18. Puerto-Souza GA, Mariottini G-L. A fast and accurate feature-matching algorithm for minimally-invasive endoscopic images. IEEE Trans. Med. Imaging. 2013;32:1201–1214. doi: 10.1109/TMI.2013.2239306.
19. Yip MC, Lowe DG, Salcudean SE, Rohling RN, Nguan CY. Real-time methods for long-term tissue feature tracking in endoscopic scenes. In: Abolmaesumi P, Joskowicz L, Navab N, Jannin P, editors. Information Processing in Computer-Assisted Interventions. Berlin, Heidelberg: Springer; 2012. pp. 33–43.
20. Giannarou S, Visentini-Scarzanella M, Yang G-Z. Probabilistic tracking of affine-invariant anisotropic regions. IEEE Trans. Pattern Anal. Mach. Intell. 2013;35:130–143. doi: 10.1109/TPAMI.2012.81.
21. Selka F, et al. Context-specific selection of algorithms for recursive feature tracking in endoscopic image using a new methodology. Comput. Med. Imaging Graph. 2015;40:49–61. doi: 10.1016/j.compmedimag.2014.11.012.
22. DeTone, D., Malisiewicz, T., Rabinovich, A. Deep image homography estimation. ArXiv160603798 Cs (2016).
23. Gomes S, Valério MT, Salgado M, Oliveira HP, Cunha A. Unsupervised neural network for homography estimation in capsule endoscopy frames. Procedia Comput. Sci. 2019;164:602–609. doi: 10.1016/j.procs.2019.12.226.
24. Huber, M., Ourselin, S., Bergeles, C., Vercauteren, T. Deep homography estimation in dynamic surgical scenes for laparoscopic camera motion extraction. ArXiv210915098 Cs Eess (2021).
25. Bano S, et al. Deep learning-based fetoscopic mosaicking for field-of-view expansion. Int. J. Comput. Assist. Radiol. Surg. 2020;15:1807–1816. doi: 10.1007/s11548-020-02242-8.
26. Zhang, J. et al. Content-aware unsupervised deep homography estimation. ArXiv190905983 Cs (2020).
27. Nie L, Lin C, Liao K, Liu S, Zhao Y. Depth-aware multi-grid deep homography estimation with contextual correlation. IEEE Trans. Circuits Syst. Video Technol. 2021 doi: 10.1109/TCSVT.2021.3125736.
28. Bradski G, Kaehler A. Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media Inc; 2008.
29. Moulla Y, et al. Hybridösophagektomie mit intraoperativem hyperspektral-imaging: Videobeitrag. Chir. 2020 doi: 10.1007/s00104-020-01139-1.
30. Pizer SM, et al. Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 1987;39:355–368. doi: 10.1016/S0734-189X(87)80186-X.
31. Rublee, E., Rabaud, V., Konolige, K., Bradski, G. ORB: An efficient alternative to SIFT or SURF. In 2011 International Conference on Computer Vision 2564–2571 (IEEE, 2011). 10.1109/ICCV.2011.6126544
32. Alcantarilla, P., Nuevo, J., Bartoli, A. Fast explicit diffusion for accelerated features in nonlinear scale spaces. In Proceedings of the British Machine Vision Conference 2013 13.1–13.11 (British Machine Vision Association, 2013). 10.5244/C.27.13
33. Leutenegger, S., Chli, M., Siegwart, R. Y. BRISK: Binary robust invariant scalable keypoints. In 2011 International Conference on Computer Vision 2548–2555 (2011). 10.1109/ICCV.2011.6126542
34. Fischler MA, Bolles RC. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM. 1981;24:381–395. doi: 10.1145/358669.358692.
35. Nie L, Lin C, Liao K, Liu S, Zhao Y. Unsupervised deep image stitching: Reconstructing stitched features to images. IEEE Trans. Image Process. 2021;30:6184–6197. doi: 10.1109/TIP.2021.3092828.
36. Stauder, R. et al. The TUM LapChole dataset for the M2CAI 2016 workflow challenge. ArXiv161009278 Cs (2017).
37. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004;13:600–612. doi: 10.1109/TIP.2003.819861. |