训练用单针/双针带线【出售】-->外科训练模块总目录
0.5、1、2、3.5、5mm仿生血管仿生体 - 胸腹一体式腹腔镜模拟训练器
仿气腹/半球形腹腔镜模拟训练器
[单端多孔折叠]腹腔镜模拟训练器
「训练教具器械汇总」管理员微信/QQ12087382[问题反馈]
开启左侧

[病历讨论] 激光散斑对比成像 (LSCI) 在机器人辅助手术 (RAS) 中显示实时组织灌注/血流的效用...

[复制链接]
发表于 2023-4-20 00:00:05 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

×
背景
激光散斑对比成像 (LSCI) 在机器人辅助手术 (RAS) 和腹腔镜手术中检测实时组织灌注的效用和可用性尚不清楚。 LSCI 通过捕捉相干激光对红细胞的干扰,显示实时组织血流的彩色热图。 LSCI 在灌注可视化方面优于吲哚菁绿成像 (ICG),包括按需重复使用、无需染料以及注射和显示之间没有延迟。 在此,作者报告了一种结合专有 LSCI 处理和 ICG 的新型设备的首次人体临床比较,用于在 RAS 和腹腔镜手术期间进行实时灌注评估。

方法
ActivSight 成像模块集成在标准腹腔镜相机和内窥镜之间,能够在腹腔镜手术中通过 LSCI 和 ICG 检测组织血流。 从 2020 年 11 月到 2021 年 7 月,作者研究了它在选择性机器人辅助和腹腔镜胆囊切除术、结直肠手术和减肥手术中的使用 (NCT# 04633512)。 对于 RAS,使用带有 ActivSight 成像模块的辅助腹腔镜进行 LSCI/ICG 可视化。 作者使用最终用户/外科医生人为因素测试(李克特量表 1-5)确定了 LSCI 在 RAS 与腹腔镜手术中的安全性、可用性和实用性,并将结果与双尾 t 检验进行了比较。

结果
67 名患者被纳入研究——40 名 (60%) RAS 与 27 名 (40%) 腹腔镜手术。 两组患者的人口统计数据相似。 腹腔镜组和 RAS 组均未观察到对患者和外科医生的不良事件。 使用辅助腹腔镜系统进行 LSCI/ICG 可视化对 RAS 的可用性影响最小,外科医生对设备可用性的评级(设置 4.2/5 和外形因素 3.8/5)证明了这一点。 LSCI 检测灌注的能力(RAS 为 97.5%,腹腔镜为 100%)在 RAS 和腹腔镜病例中具有可比性。

结论
LSCI 在检测 RAS 和腹腔镜手术中的实时组织灌注/血流方面展示了可比的实用性和可用性。

激光散斑对比成像 (LSCI) 在机器人辅助手术 (RAS) 中显示实时组织灌注/血流的效用...

激光散斑对比成像 (LSCI) 在机器人辅助手术 (RAS) 中显示实时组织灌注/血流的效用...

图 1
ActivSight示意图

激光散斑对比成像 (LSCI) 在机器人辅助手术 (RAS) 中显示实时组织灌注/血流的效用...

激光散斑对比成像 (LSCI) 在机器人辅助手术 (RAS) 中显示实时组织灌注/血流的效用...

图 2
结肠灌注

激光散斑对比成像 (LSCI) 在机器人辅助手术 (RAS) 中显示实时组织灌注/血流的效用...

激光散斑对比成像 (LSCI) 在机器人辅助手术 (RAS) 中显示实时组织灌注/血流的效用...

图 3
胃切除灌注

激光散斑对比成像 (LSCI) 在机器人辅助手术 (RAS) 中显示实时组织灌注/血流的效用...

激光散斑对比成像 (LSCI) 在机器人辅助手术 (RAS) 中显示实时组织灌注/血流的效用...

图 4
腹腔镜胆道ICG

参考资料:
1. Urbanavičius L. How to assess intestinal viability during surgery: a review of techniques. World J Gastrointest Surg. 2011;3(5):59. doi: 10.4240/wjgs.v3.i5.59.  
2. Karliczek A, et al. Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int J Colorectal Dis. 2009;24(5):569–576. doi: 10.1007/s00384-009-0658-6.
3. Kudszus S, et al. Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg. 2010;395(8):1025–1030. doi: 10.1007/s00423-010-0699-x.
4. Wada T, et al. ICG fluorescence imaging for quantitative evaluation of colonic perfusion in laparoscopic colorectal surgery. Surg Endosc. 2017;31(10):4184–4193. doi: 10.1007/s00464-017-5475-3.
5. Degett TH, Andersen HS, Gögenur I. Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials. Langenbecks Arch Surg. 2016;401(6):767–775. doi: 10.1007/s00423-016-1400-9.
6. Blanco-Colino R, Espin-Basany E. Intraoperative use of ICG fluorescence imaging to reduce the risk of anastomotic leakage in colorectal surgery: a systematic review and meta-analysis. Tech Coloproctol. 2018;22(1):15–23. doi: 10.1007/s10151-017-1731-8.
7. Boni L, et al. Indocyanine green-enhanced fluorescence to assess bowel perfusion during laparoscopic colorectal resection. Surg Endosc. 2016;30(7):2736–2742. doi: 10.1007/s00464-015-4540-z.  
8. De Nardi P, et al. Intraoperative angiography with indocyanine green to assess anastomosis perfusion in patients undergoing laparoscopic colorectal resection: results of a multicenter randomized controlled trial. Surg Endosc. 2020;34(1):53–60. doi: 10.1007/s00464-019-06730-0.
9. Ladak F, et al. Indocyanine green for the prevention of anastomotic leaks following esophagectomy: a meta-analysis. Surg Endosc. 2019;33(2):384–394. doi: 10.1007/s00464-018-6503-7.
10. Lin J, et al. The efficacy of intraoperative ICG fluorescence angiography on anastomotic leak after resection for colorectal cancer: a meta-analysis. Int J Colorectal Dis. 2021;36(1):27–39. doi: 10.1007/s00384-020-03729-1.
11. Baiocchi GL, Diana M, Boni L. Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: state of the art and future directions. World J Gastroenterol. 2018;24(27):2921–2930. doi: 10.3748/wjg.v24.i27.2921.  
12. Alander JT, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging. 2012;2012:1–26. doi: 10.1155/2012/940585.  
13. Lütken CD, et al. Quantification of fluorescence angiography: toward a reliable intraoperative assessment of tissue perfusion—a narrative review. Langenbecks Arch Surg. 2021;406(2):251–259. doi: 10.1007/s00423-020-01966-0.
14. Ronn JH, et al. Laser speckle contrast imaging and quantitative fluorescence angiography for perfusion assessment. Langenbecks Arch Surg. 2019;404(4):505–515. doi: 10.1007/s00423-019-01789-8.
15. Chu W, et al. Anaphylactic shock after intravenous administration of indocyanine green during robotic partial nephrectomy. Urol Case Rep. 2017;12:37–38. doi: 10.1016/j.eucr.2017.02.006.  
16. Heeman W, et al. Application of laser speckle contrast imaging in laparoscopic surgery. Biomed Opt Express. 2019;10(4):2010–2019. doi: 10.1364/BOE.10.002010.  
17. Heeman W, et al. Clinical applications of laser speckle contrast imaging: a review. J Biomed Opt. 2019;24(08):1. doi: 10.1117/1.JBO.24.8.080901.  
18. Milstein DMJ, et al. Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy. Medicine (Baltimore) 2016;95(25):e3875. doi: 10.1097/MD.0000000000003875.  
19. Draijer M, et al. Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med Sci. 2009;24(4):639–651. doi: 10.1007/s10103-008-0626-3.  
20. Briers D, et al. Laser speckle contrast imaging: theoretical and practical limitations. J Biomed Opt. 2013;18(6):066018. doi: 10.1117/1.JBO.18.6.066018.
21. Zheng C, Lau LW, Cha J. Dual-display laparoscopic laser speckle contrast imaging for real-time surgical assistance. Biomed Opt Express. 2018;9(12):5962–5981. doi: 10.1364/BOE.9.005962.  
22. Davis MA, Kazmi SM, Dunn AK. Imaging depth and multiple scattering in laser speckle contrast imaging. J Biomed Opt. 2014;19(8):086001. doi: 10.1117/1.JBO.19.8.086001.  
23. Oberlin J, Dimaio E (2021) U.S. Patent No. 11206991: systems and methods for processing laser speckle signals. Activ Surgical, United States.
24. Jafari MD, et al. Perfusion assessment in left-sided/low anterior resection (PILLAR III): a randomized, controlled, parallel, multicenter study assessing perfusion outcomes With PINPOINT near-infrared fluorescence imaging in low anterior resection. Dis Colon Rectum. 2021;64(8):995–1002. doi: 10.1097/DCR.0000000000002007.
25. Jafari MD, et al. Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study. J Am Coll Surg. 2015;220(1):82–92.e1. doi: 10.1016/j.jamcollsurg.2014.09.015.
26. Towle EL et al (2012) Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion. Neurosurgery 71(5):1023–1030; discussion 1030–1031.  
27. Nwaiwu CA, et al. Feasibility and comparison of laparoscopic laser speckle contrast imaging to near-infrared display of indocyanine green in intraoperative tissue blood flow/tissue perfusion and extrahepatic bile ducts in preclinical porcine models. J Am Coll Surg. 2021;233(5):S78–S79. doi: 10.1016/j.jamcollsurg.2021.07.143.
28. Barberio M, et al. Quantitative fluorescence angiography versus hyperspectral imaging to assess bowel ischemia: a comparative study in enhanced reality. Surgery. 2020;168(1):178–184. doi: 10.1016/j.surg.2020.02.008.
29. Barberio M, et al. HYPerspectral enhanced reality (HYPER): a physiology-based surgical guidance tool. Surg Endosc. 2020;34(4):1736–1744. doi: 10.1007/s00464-019-06959-9.
30. D’Urso A, et al. Computer-assisted quantification and visualization of bowel perfusion using fluorescence-based enhanced reality in left-sided colonic resections. Surg Endosc. 2021;35(8):4321–4331. doi: 10.1007/s00464-020-07922-9.
31. Nadort A, et al. Quantitative blood flow velocity imaging using laser speckle flowmetry. Sci Rep. 2016;6:25258. doi: 10.1038/srep25258.  
32. Moghadamyeghaneh Z, et al. Comparison of open, laparoscopic, and robotic approaches for total abdominal colectomy. Surg Endosc. 2016;30(7):2792–2798. doi: 10.1007/s00464-015-4552-8.
33. Wood MH, Kroll JJ, Garretson B. A comparison of outcomes between the traditional laparoscopic and totally robotic Roux-en-Y gastric bypass procedures. J Robot Surg. 2014;8(1):29–34. doi: 10.1007/s11701-013-0416-1.
34. Romero RJ, et al. Robotic sleeve gastrectomy: experience of 134 cases and comparison with a systematic review of the laparoscopic approach. Obes Surg. 2013;23(11):1743–1752. doi: 10.1007/s11695-013-1004-1.
您需要登录后才可以回帖 登录 | 注册

本版积分规则

丁香叶与你快乐分享

微信公众号

管理员微信

服务时间:8:30-21:30

站长微信/QQ

← 微信/微信群

← QQ

Copyright © 2013-2025 丁香叶 Powered by dxye.com  手机版 
快速回复 返回列表 返回顶部