训练用单针/双针带线【出售】-->外科训练模块总目录
0.5、1、2、3.5、5mm仿生血管仿生体 - 胸腹一体式腹腔镜模拟训练器
仿气腹/半球形腹腔镜模拟训练器
[单端多孔折叠]腹腔镜模拟训练器
「训练教具器械汇总」管理员微信/QQ12087382[问题反馈]
开启左侧

[病历讨论] 关节式腹腔镜的瞄准镜驱动系统

[复制链接]
发表于 2023-4-17 00:00:04 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

×
背景
铰接式腹腔镜包括带有铰接式远端以改变观察方向的刚性轴。 铰接改善了在密闭空间中操作区域的导航。 此外,致动系统的并入倾向于增强铰接式腹腔镜的控制。

方法
开发了用于操纵现成的铰接式腹腔镜(德国 Karl Storz 的 EndoCAMaleon)的范围致动系统的初步原型。 进行了一项用户研究,以评估该原型在视频辅助胸外科手术范例中的应用。 在这项研究中,受试者在两种操作模式下操纵铰接式内窥镜:(a) 外科医生使用开发的原型操纵内窥镜的驱动模式和 (b) 手术助手直接操纵内窥镜的手动模式。 根据切口处铰接范围的方向,针对多种配置进一步评估了致动模式。

结果
数据显示,在所有测量的性能参数上,启动模式的得分均优于手动模式,包括 (a) 可视化标记区域的总持续时间,(a) 示波器焦点移出预定义可视化区域的持续时间,以及 (c) 数量 范围焦点转移到预定义可视化区域之外的次数。 在使用启动模式测试的不同配置中,未观察到显著差异。

结论
与人类助手相比,所提出的铰接式范围驱动系统有助于更好地导航手术区域。 其次,无论铰接镜轴通过切口插入的方向如何,所提出的驱动系统都可以导航和可视化手术区域。

关节式腹腔镜的瞄准镜驱动系统

关节式腹腔镜的瞄准镜驱动系统

图 1
a 连接到摄像头(Karl Storz 的 Image1HD)的铰接式示波器(Karl Storz 的 EndoCAMeleon)。 旋转示波器后端的旋钮(如面板 A1 所示)可控制示波器角度,将观察方向从 0° 旋转到 120°(如面板 A2 所示)。 b 铰接式瞄准镜和摄像头放置在支撑板上。 齿轮机构连接到旋钮(如面板 B1 所示),由角度电机(如面板 B2 所示)接合。 启动角度电机会旋转旋钮,进而改变示波器角度。 c 示波器适配器用于承载支撑板。 支撑板沿着凹槽插入内筒(如图 C1 所示),并使用锁定销锁定到位。 d 示波器适配器配有连接器,可将组件连接到机械臂上。 内筒相对于外筒的旋转使铰接式瞄准镜沿其轴线旋转

关节式腹腔镜的瞄准镜驱动系统

关节式腹腔镜的瞄准镜驱动系统

图 2
拟议的系统架构,用于使用外科医生的头部运动来驱动铰接式范围。 该系统的硬件包括头部跟踪单元、离合器、接口工作站和范围适配器。 接口工作站充当计算单元来处理发往/来自不同硬件单元的命令和数据流

关节式腹腔镜的瞄准镜驱动系统

关节式腹腔镜的瞄准镜驱动系统

图 3
外科医生为与系统交互而执行的三种头部运动(滚动、偏航和俯仰)、系统根据感知到的头部运动产生的驱动,以及基于系统产生的驱动的手术视野变化系统

关节式腹腔镜的瞄准镜驱动系统

关节式腹腔镜的瞄准镜驱动系统

图 4
a 左侧卧位患者的图示,描绘了右肺叶和肋骨。 b 在右肺叶上绘制的闭环轨迹,供受试者在导航任务期间进行可视化。 c 研究中使用的人造肺模体。 d 适用于连接到 UR5 机器人操纵器的示波器,用于相对于肺模型放置铰接式示波器。 铰接范围获得的视图显示在面板 D1 中。 e 研究中使用的配置(代表铰接镜轴的方向)

关节式腹腔镜的瞄准镜驱动系统

关节式腹腔镜的瞄准镜驱动系统

图 5
箱线图显示用于评估导航轨道的用户研究任务的参数。 在手动和驱动操作模式下,使用铰接式瞄准镜在轨道上导航。 启动模式进一步分为六种不同的配置

关节式腹腔镜的瞄准镜驱动系统

关节式腹腔镜的瞄准镜驱动系统

图 6
使用 NASA-TXL 工作负载评估量表(从 1 到 10)对驱动模式和手动模式的平均分数

参考资料:
1. Cheng T, Ng CSH, Li Z. Innovative surgical endoscopes in video-assisted thoracic surgery. J Thorac Dis. 2018;10:S749–S755. doi: 10.21037/jtd.2018.03.37.   
2. Hong SK, Shin E, Lee KW, Yoon KC, Lee JM, Cho JH, Yi NJ, Suh KS. Pure laparoscopic donor right hepatectomy: perspectives in manipulating a flexible scope. Surg Endosc. 2019;33:1667–1673. doi: 10.1007/s00464-018-6594-1.   
3. Legrand J, Ourak M, Van Gerven L, Vander Poorten V, Vander Poorten E. A miniature robotic steerable endoscope for maxillary sinus surgery called PliENT. Sci Rep. 2022;12:2299. doi: 10.1038/s41598-022-05969-3.   
4. Li Z, Ng CS. Future of uniportal video-assisted thoracoscopic surgery-emerging technology. Ann Cardiothorac Surg. 2016;5:127–132. doi: 10.21037/acs.2016.02.02.   
5. How to use the ENDOEYE FLEX Deflectable Videoscope (2022) https://www.olympusprofed.com/gs/lapcolorectal/9159/. Accessed 18 Sept 2022
6. Li Z, Oo MZ, Nalam V, Thang VD, Ren H, Kofidis T. Design of a novel flexible endoscope—cardioscope. J Mech Robot. 2016;10(1115/1):4032272.
7. Song C, Ma X, Xia X, Chiu PWY, Chong CCN, Li Z. A robotic flexible endoscope with shared autonomy: a study of mockup cholecystectomy. Surg Endosc. 2020;34:2730–2741. doi: 10.1007/s00464-019-07241-8.   
8. Rozeboom ED, Reilink R, Schwartz MP, Fockens P, Broeders IA. Evaluation of the tip-bending response in clinically used endoscopes. Endosc Int Open. 2016;4:E466–471. doi: 10.1055/s-0042-104115.   
9. von Renteln D, Vassiliou MC, Rösch T, Rothstein RI. Triangulation: the holy grail of endoscopic surgery? Surg Endosc. 2011;25:1355–1357. doi: 10.1007/s00464-011-1650-0.   
10. Funk SE, Reaven NL. High-level endoscope disinfection processes in emerging economies: financial impact of manual process versus automated endoscope reprocessing. J Hosp Infect. 2014;86:250–254. doi: 10.1016/j.jhin.2014.01.007.   
11. Ng CS, Wong RH, Lau RW, Yim AP. Single port video-assisted thoracic surgery: advancing scope technology. Eur J Cardiothorac Surg. 2015;47:751. doi: 10.1093/ejcts/ezu236.   
12. Khorasani M, Abdurahiman N, Padhan J, Zhao H, Al-Ansari A, Becker AT, Navkar N. Preliminary design and evaluation of a generic surgical scope adapter. Int J Med Robot. 2022 doi: 10.1002/rcs.2475.   
13. Gossot D, Grigoroiu M, Brian E, Seguin-Givelet A. Technical means to improve image quality during thoracoscopic procedures. J Vis Surg. 2017;3:53. doi: 10.21037/jovs.2017.02.12.   
14. Yang Y, Bao F, He Z, Hu J. Single-port video-assisted thoracoscopic right upper lobectomy using a flexible videoscope. Eur J Cardiothorac Surg. 2014;46:496–497. doi: 10.1093/ejcts/ezu091.   
15. Kraft BM, Jäger C, Kraft K, Leibl BJ, Bittner R. The AESOP robot system in laparoscopic surgery: increased risk or advantage for surgeon and patient? Surg Endosc. 2004;18:1216–1223. doi: 10.1007/s00464-003-9200-z.   
16. Aiono S, Gilbert JM, Soin B, Finlay PA, Gordan A. Controlled trial of the introduction of a robotic camera assistant (EndoAssist) for laparoscopic cholecystectomy. Surg Endosc. 2002;16:1267–1270. doi: 10.1007/s00464-001-9174-7.   
17. Sivananthan A, Kogkas A, Glover B, Darzi A, Mylonas G, Patel N. A novel gaze-controlled flexible robotized endoscope; preliminary trial and report. Surg Endosc. 2021;35:4890–4899. doi: 10.1007/s00464-021-08556-1.   
18. Supe AN, Kulkarni GV, Supe PA. Ergonomics in laparoscopic surgery. J Minim Access Surg. 2010;6:31–36. doi: 10.4103/0972-9941.65161.   
19. Yang YW, Huang SC, Chang SC, Wang HS, Yang SH, Chen WS, Lan YT, Lin CC, Lin HH, Jiang JK. Three-dimensional versus conventional two-dimensional laparoscopic colectomy for colon cancer: A 3-year follow-up study. J Minim Access Surg. 2022;18:289–294. doi: 10.4103/jmas.JMAS_31_21.   
20. Velasquez CA, Navkar NV, Alsaied A, Balakrishnan S, Abinahed J, Al-Ansari AA, Jong Yoon W. Preliminary design of an actuated imaging probe for generation of additional visual cues in a robotic surgery. Surg Endosc. 2016;30:2641–2648. doi: 10.1007/s00464-015-4270-2.   
21. Qian L, Song C, Jiang Y, Luo Q, Ma X, Chiu PW, Li Z, Kazanzides P (2020) FlexiVision: Teleporting the surgeon’s eyes via robotic flexible endoscope and head-mounted display. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3281–3287
22. Park JO, Kim MR, Park YJ, Kim MS, Sun DI. Transoral endoscopic thyroid surgery using robotic scope holder: our initial experiences. J Minim Access Surg. 2020;16:235–238. doi: 10.4103/jmas.JMAS_12_19.   
23. Takahashi M, Nishinari N, Matsuya H, Tosha T, Minagawa Y, Shimooki O, Abe T. Clinical evaluation of complete solo surgery with the "ViKY(®)" robotic laparoscope manipulator. Surg Endosc. 2017;31:981–986. doi: 10.1007/s00464-016-5058-8.   
24. Abdurahiman N, Padhan J, Zhao H, Balakrishnan S, Al-Ansari A, Abinahed J, Velasquez CA, Becker AT, Navkar NV (2022) Human-computer interfacing for control of angulated scopes in robotic scope assistant systems. IEEE International Symposium on Medical Robotics (ISMR)
25. Velazco-Garcia JD, Navkar NV, Balakrishnan S, Younes G, Abi-Nahed J, Al-Rumaihi K, Darweesh A, Elakkad MSM, Al-Ansari A, Christoforou EG, Karkoub M, Leiss EL, Tsiamyrtzis P, Tsekos NV. Evaluation of how users interface with holographic augmented reality surgical scenes: interactive planning MR-Guided prostate biopsies. Int J Med Robot. 2021;17:e2290. doi: 10.1002/rcs.2290.   
26. Mojica CMM, Garcia JDV, Navkar NV, Balakrishnan S, Abinahed J, Ansari WE, Al-Rumaihi K, Darweesh A, Al-Ansari A, Gharib M, Karkoub M, Leiss EL, Seimenis I, Tsekos NV (2018) A prototype holographic augmented reality interface for image-guided prostate cancer interventions. Eurographics Workshop on Visual Computing for Biology and Medicine, pp. 17–21
27. Campos JH, Feider A. Hypoxia during one-lung ventilation-a review and update. J Cardiothorac Vasc Anesth. 2018;32:2330–2338. doi: 10.1053/j.jvca.2017.12.026.   
28. Velazco-Garcia JD, Navkar NV, Balakrishnan S, Abinahed J, Al-Ansari A, Younes G, Darweesh A, Al-Rumaihi K, Christoforou EG, Leiss EL, Karkoub M, Tsiamyrtzis P, Tsekos NV (2019) Preliminary evaluation of robotic transrectal biopsy system on an interventional planning software. IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 357–362
29. Velazco-Garcia JD, Navkar NV, Balakrishnan S, Abinahed J, Al-Ansari A, Darweesh A, Al-Rumaihi K, Christoforou E, Leiss EL, Karkoub M, Tsiamyrtzis P, Tsekos NV (2020) Evaluation of interventional planning software features for MR-guided transrectal prostate biopsies. IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 951–954
30. Velazco-Garcia JD, Navkar NV, Balakrishnan S, Abi-Nahed J, Al-Rumaihi K, Darweesh A, Al-Ansari A, Christoforou EG, Karkoub M, Leiss EL, Tsiamyrtzis P, Tsekos NV. End-user evaluation of software-generated intervention planning environment for transrectal magnetic resonance-guided prostate biopsies. Int J Med Robot. 2021;17:1–12. doi: 10.1002/rcs.2179.   
您需要登录后才可以回帖 登录 | 注册

本版积分规则

丁香叶与你快乐分享

微信公众号

管理员微信

服务时间:8:30-21:30

站长微信/QQ

← 微信/微信群

← QQ

Copyright © 2013-2025 丁香叶 Powered by dxye.com  手机版 
快速回复 返回列表 返回顶部