参考资料:
1. Tsui C, Klein R, Garabrant M. Minimally invasive surgery: National trends in adoption and future directions for hospital strategy. Surg. Endosc. 2013;27:2253–2257. doi: 10.1007/s00464-013-2973-9.
2. Kelley Jr EK. The evolution of laparoscopy and the revolution in surgery in the decade of the 1990s. JSLS. 2008;12:351–357.
3. Cuschieri A. Minimal access surgery and the future of interventional laparoscopy. Am. J. Surg. 1991;161:404–407. doi: 10.1016/0002-9610(91)90608-G.
4. Heemskerk J, Zandbergen R, Maessen JG, Greve JWM, Bouvy ND. Advantages of advanced laparoscopic systems. Surg. Endosc. Other Interv. Tech. 2006;20:730–733. doi: 10.1007/s00464-005-0456-3.
5. Pierre SA, et al. High definition laparoscopy: Objective assessment of performance characteristics and comparison with standard laparoscopy. J. Endourol. 2009;23:523–528. doi: 10.1089/end.2008.0277.
6. Wu MP, Ou CS, Chen SL, Yen EYT, Rowbotham R. Complications and recommended practices for electrosurgery in laparoscopy. Am. J. Surg. 2000;179:67–73. doi: 10.1016/S0002-9610(99)00267-6.
7. El-Sayed M, Mohamed S, Saridogan E. Safe use of electrosurgery in gynaecological laparoscopic surgery. Obstet. Gynaecol. 2020;22:9–20. doi: 10.1111/tog.12620.
8. Brill AI, et al. Patient safety during laparoscopic monopolar electrosurgery—Principles and guidelines. Consortium on electrosurgical safety during laparoscopy. JSLS J. Soc. Laparoendosc. Surg./Soc. Laparoendosc. Surg. 1998;2:221–225.
9. Alkatout I. Complications of laparoscopy in connection with entry techniques. J. Gynecol. Surg. 2017;33:81–91. doi: 10.1089/gyn.2016.0111.
10. Makiyama K, et al. How to reduce the risk of organ injuries during surgical instrument insertion in laparoscopic surgery: Pushing/pressing force analysis using forceps with sensors. Asian J. Endosc. Surg. 2020 doi: 10.1111/ases.12904.
11. Perantinides, P. G. The Medicolegal Risks of Thermal Injury During Laparoscopic Monopolar Electrosurgery. (1998).
12. Nishikawa A, Nakagoe H, Taniguchi K, Yamada Y. How Does the Camera Assistant Decide the Zooming Ratio of Laparoscopic Images? 611–618. Springer; 2008.
13. Zheng B, Taylor MD, Swanström LL. An observational study of surgery-related activities between nurses and surgeons during laparoscopic surgery. Am. J. Surg. 2009;197:497–502. doi: 10.1016/j.amjsurg.2008.01.034.
14. Chiu A, et al. The role of the assistant in laparoscopic surgery: Important considerations for the apprentice-in-training. Surg. Innov. 2008;15:229–236. doi: 10.1177/1553350608323061.
15. Finlay PA, Ornstein MH. Controlling the movement of a surgical laparoscope. IEEE Eng. Med. Biol. Mag. 1995;14:289–291. doi: 10.1109/51.391775.
16. Frazee RC, et al. A prospective randomized trial comparing open versus laparoscopic appendectomy. Ann. Surg. 1994;219:725–731. doi: 10.1097/00000658-199406000-00017.
17. Gadacz TR, Talamini MA. Traditional versus laparoscopic cholecystectomy. Am. J. Surg. 1991;161:336–338. doi: 10.1016/0002-9610(91)90591-Z.
18. Shushan A, Mohamed H, Magos AL. How long does laparoscopic surgery really take? Lessons learned from 1000 operative laparoscopies. Hum. Reprod. 1999;14:39–43. doi: 10.1093/humrep/14.1.39.
19. Muñoz VF, et al. On laparoscopic robot design and validation. Integr. Comput. Aided Eng. 2003;10:211–229. doi: 10.3233/ICA-2003-10301.
20. Kobayashi E, Sakuma I, Dohi T. A wide-angle view endoscope using wedge prisms. J. Jpn. Soc. Comput. Aided Surg. (JJSCAS) 2000;2:171–172. doi: 10.5759/jscas1999.2.171.
21. Kobayashi E, Sakuma I, Konishi K, Hashizume M, Dohi T. A robotic wide-angle view endoscope using wedge prisms. Surg. Endosc. Other Interv. Tech. 2004;18:1396–1398. doi: 10.1007/s00464-003-8230-x.
22. Roulet P, Konen P, Villegas M, Thibault S, Garneau PY. 360° endoscopy using panomorph lens technology. Endosc. Microsc. V. 2010;7558:75580T. doi: 10.1117/12.842417.
23. Trilling B, et al. Enhanced laparoscopic vision improves detection of intraoperative adverse events during laparoscopy. IRBM. 2020;1:1–7.
24. Trilling B, et al. Improving vision for surgeons during laparoscopy: The enhanced laparoscopic vision system (ELViS) Surg. Endosc. 2021;35:2403–2415. doi: 10.1007/s00464-021-08369-2.
25. Tamadazte B, Agustinos A, Cinquin P, Fiard G, Voros S. Multi-view vision system for laparoscopy surgery. Int. J. Comput. Assist. Radiol. Surg. 2015;10:195–203. doi: 10.1007/s11548-014-1064-2.
26. Kanhere A, et al. Multicamera laparoscopic imaging with tunable focusing capability. J. Microelectromech. Syst. 2014;23:1290–1299. doi: 10.1109/JMEMS.2014.2360124.
27. Watras AJ, et al. Large-field-of-view visualization with small blind spots utilizing tilted micro-camera array for laparoscopic surgery. Micromachines (Basel) 2020;11:1–14.
28. Kim JJ, et al. Large-field-of-view visualization utilizing multiple miniaturized cameras for laparoscopic surgery. Micromachines (Basel) 2018;9:1–13.
29. Sumi Y, et al. A prospective study of the safety and usefulness of a new miniature wide-angle camera: The “BirdView camera system” Surg. Endosc. 2019;33:199–205. doi: 10.1007/s00464-018-6293-y.
30. Oleynikov D, et al. In vivo camera robots provide improved vision for laparoscopic surgery. Int. Congr. Ser. 2004;1268:787–792. doi: 10.1016/j.ics.2004.03.194.
31. Rivas-blanco I, et al. Global vision system in laparoscopy. Actas Urol. Esp. 2017;41:274–278. doi: 10.1016/j.acuro.2016.09.016.
32. Castro, C. A. et al. MARVEL: A wireless miniature anchored robotic videoscope for expedited laparoscopy. in 2012 IEEE International Conference on Robotics and Automation. Vol. 46. 2926–2931 (IEEE, 2012).
33. Castro CA, et al. A wireless robot for networked laparoscopy. IEEE Trans. Biomed. Eng. 2013;60:930–936. doi: 10.1109/TBME.2012.2232926.
34. Yamauchi, Y. et al. A dual-view endoscope with image shift. in CARS 2002 Computer Assisted Radiology and Surgery. 183–187. 10.1007/978-3-642-56168-9_30 (Springer, 2002).
35. Sekiya T, Ito E, Kanai M, Matsumoto M. Development of a dual-view endoscope system. Adv. Biomed. Clin. Diagn. Syst. IV. 2006;6080:60800E. doi: 10.1117/12.644566.
36. Qin Y, Hua H, Nguyen M. Multiresolution foveated laparoscope with high resolvability. Opt. Lett. 2013;38:2191. doi: 10.1364/OL.38.002191.
37. Qin Y, Hua H. Optical design and system engineering of a multiresolution foveated laparoscope. Appl. Opt. 2016;55:3058–3068. doi: 10.1364/AO.55.003058.
38. Qin Y, Hua H. Continuously zoom imaging probe for the multi-resolution foveated laparoscope. Biomed. Opt. Exp. 2016;7:1175. doi: 10.1364/BOE.7.001175.
39. Katz JI, Lee S, Hua H. Improved multi-resolution foveated laparoscope with real-time digital transverse chromatic correction. Appl. Opt. 2020;59:G79. doi: 10.1364/AO.393088.
40. Qin Y, Hua H, Nguyen M. Characterization and in-vivo evaluation of a multi-resolution foveated laparoscope for minimally invasive surgery. Biomed. Opt. Exp. 2014;5:2548. doi: 10.1364/BOE.5.002548.
41. Qin Y, Zheng Z, Hua H. Multi-resolution foveated laparoscope. Front. Opt. FIO. 2012;2012:5–6. doi: 10.1364/fio.2012.fth1f.4.
42. Lee S, Hua H, Nguyen M, Hamilton AJ. Comparison of six display modes for a multi-resolution foveated laparoscope. Surg. Endosc. 2019;33:341–351. doi: 10.1007/s00464-018-6445-0.
43. Lee S, Hua H, Nguyen M, Hamilton AJ. Further comparison of 4 display modes for a multi-resolution foveated laparoscope. Surg. Innov. 2021;28:85–93. doi: 10.1177/1553350620957799.
44. Lovett M, et al. Evaluation of learning curve and peripheral awareness using a novel multiresolution foveated laparoscope. Simulat. Ser. 2019;51:1–9.
45. Nguyen M, et al. Surgeon assessment of a novel multi-resolution foveated laparoscope. Surg. Innov. 2022 doi: 10.1177/15533506221081100.
46. Cao A, et al. Comparison of a supplemental wide field of view versus a single field of view with zoom on performance in minimally invasive surgery. Surg. Endosc. Other Interv. Tech. 2008;22:1445–1451. doi: 10.1007/s00464-007-9627-8.
47. Katz JI, Hua H. High-throughput multi-resolution foveated laparoscope for minimally invasive surgery. Biomed. Opt. Exp. 2022;13:3366. doi: 10.1364/BOE.458073.
48. Katz, J. I. A High-Throughput Multi-Resolution Foveated Laparoscope. Preprint. https://dissexpress.proquest.com ... oveated+Laparoscope (2022).
49. Benezeth, Y., Jodoin, P. M., Emile, B., Laurent, H. & Rosenberger, C. Review and evaluation of commonly-implemented background subtraction algorithms. in 19th International Conference on Pattern Recognition. 2–5. 10.1109/ICPR.2008.4760998 (IEEE, 2008).
50. Jung K, et al. A hands-free region-of-interest selection interface for solo surgery with a wide-angle endoscope: Preclinical proof of concept. Surg. Endosc. 2017;31:974–980. doi: 10.1007/s00464-016-5013-8.
51.doi: 10.1038/s41598-022-23021-2.