马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
×
神经药理学研究药物如何影响神经系统的细胞功能,以及它们通过其影响行为的神经机制。[1]神经药理学有两个主要分支:行为学和分子学。行为神经药理学专注于研究药物如何影响人类行为(神经心理药理学),包括研究药物依赖性和成瘾如何影响人脑。[2]分子神经药理学涉及神经元及其神经化学相互作用的研究,其总体目标是开发对神经功能具有有益作用的药物。这两个领域密切相关,因为它们都与中枢神经系统和周围神经系统中神经递质,神经肽,神经激素,神经调节剂,酶,第二信使,共转运蛋白,离子通道和受体蛋白的相互作用有关。通过研究这些相互作用,研究人员正在开发药物来治疗许多不同的神经系统疾病,包括疼痛,帕金森氏病和阿尔茨海默氏病等神经退行性疾病,心理疾病,成瘾等。
内容
1 历史
2 概述
3 神经化学相互作用
4 分子神经药理学
4.1 GABA
4.2 多巴胺
4.3 血清素
4.4 离子通道
5 行为神经药理学
5.1 乙醇
6 研究
6.1 帕金森氏病
6.2 阿尔茨海默氏病
6.3 未来
7 参考
历史
直到20世纪初,神经药理学才出现在科学界。科学家能够弄清对神经系统以及神经之间如何交流的基本理解。在此发现之前,已经发现对神经系统表现出某种类型影响的药物。在1930年代,法国科学家开始研究一种名为吩噻嗪的化合物,以期合成一种能够对抗疟疾的药物。尽管这种药物在针对疟疾感染者的使用中几乎没有希望,但已发现它具有镇静作用以及对帕金森氏病患者有益的作用。这种黑匣子方法是研究人员在不知道如何将药物作用与患者反应相关的情况下进行给药并检查其反应的方法,是该领域的主要方法,直到1940年代末和1950年代初,科学家们才能够确定特定的神经递质,例如去甲肾上腺素(涉及血管收缩以及心率和血压升高),多巴胺(其短缺与帕金森氏病有关),5-羟色胺(很快被认为与抑郁症密切相关) )。在1950年代,科学家还能够更好地测量体内特定神经化学物质的水平,从而将这些水平与行为联系起来。[3] 1949年电压钳的发明使人们能够研究离子通道和神经动作电位。神经药理学的这两个主要历史事件使科学家不仅能够研究信息如何从一个神经元转移到另一个神经元,还可以研究神经元如何在自身内部处理该信息。
概述
神经药理学是一个非常广泛的科学领域,涵盖了神经系统的许多方面,从单个神经元操作到大脑,脊髓和周围神经的整个区域。 为了更好地理解药物开发的基础,必须首先了解神经元如何相互交流。 本文将重点研究行为和分子神经药理学。 通过药物作用操纵的主要受体,离子通道和神经递质,以及患有神经系统疾病的人如何从该药物作用中受益。
神经化学相互作用
标记神经元的不同部分
要了解神经药理学可以带来的潜在医学进步,了解人类行为和思维过程如何从神经元转移到神经元以及药物如何改变这些过程的化学基础非常重要。
神经元被称为可兴奋细胞,因为在其表面膜上存在大量称为离子通道的蛋白质,该蛋白质可让带电的小颗粒进出细胞。神经元的结构允许其树突接收化学信息,通过周核细胞(细胞体)和其轴突传播,并最终通过其轴突末端传递到其他神经元。这些电压门控离子通道可让整个细胞快速去极化。如果该去极化达到一定阈值,则将引起动作电位。一旦动作电位到达轴突末端,它将引起钙离子流入细胞。钙离子然后将使囊泡(充满神经递质的小包装)与细胞膜结合,并将其内含物释放到突触中。该细胞称为突触前神经元,与释放的神经递质相互作用的细胞称为突触后神经元。一旦神经递质被释放到突触中,它可以与突触后细胞上的受体结合,突触前细胞可以重新摄取并保存以备以后传播,或者可以被突触中的酶分解。特定于特定的神经递质。这三种不同的作用是药物作用可影响神经元之间交流的主要领域。[3]
神经递质在突触后神经元上与两种受体相互作用。第一类受体是配体门控离子通道或LGIC。 LGIC受体是从化学信号到电信号的最快转导类型。一旦神经递质与受体结合,它将引起构象变化,使离子直接流入细胞。第二种称为G蛋白偶联受体或GPCR。由于必须在细胞内发生的生化反应数量增加,因此这些方法比LGIC慢得多。一旦神经递质与GPCR蛋白结合,它将引起一系列细胞内相互作用,从而导致细胞生物化学,生理学和基因表达发生许多不同类型的变化。在神经药理学领域,神经递质/受体的相互作用极为重要,因为当今开发的许多药物都与破坏这种结合过程有关。[4]
分子神经药理学
分子神经药理学涉及神经元及其神经化学相互作用以及神经元受体的研究,其目的是开发新的药物来治疗神经系统疾病,例如疼痛,神经退行性疾病和心理疾病(在这种情况下,也称为神经心理药理学)。将神经传递与受体作用联系起来时,必须定义一些技术术语:
激动剂–与受体蛋白结合并激活该受体的分子
竞争性拮抗剂–一种与激动剂结合在受体蛋白上相同位点的分子,阻止了受体的活化
非竞争性拮抗剂–一种与受体蛋白结合的分子,其激动剂的位置不同,但会引起不允许激活的蛋白构象变化。
以下神经递质/受体相互作用可能会受到上述三种化合物之一的影响。钠/钾离子通道也可以在整个神经元中被操纵,以诱导动作电位的抑制作用。
GABA
GABA神经递质介导中枢神经系统的快速突触抑制。当GABA从其突触前细胞释放时,它将与受体(最可能是GABAA受体)结合,导致突触后细胞超极化(保持在其动作电位阈值以下)。这将抵消来自其他神经递质/受体相互作用的任何兴奋性操纵的影响。
该GABAA受体包含许多允许构象变化的结合位点,并且是药物开发的主要目标。这些结合位点中最常见的是苯并二氮杂allows,对受体具有激动剂和拮抗剂作用。常见的药物安定在该结合位点起变构增强剂的作用。[5] GABA的另一种受体,称为GABAB,可以通过称为巴氯芬的分子增强。该分子充当激动剂,因此激活受体,并且已知有助于控制和减少痉挛运动。
多巴胺
多巴胺神经递质通过结合五种特异性GPCR介导突触传递。由于反应是在突触后细胞上引起兴奋性反应还是抑制性反应,所以将这五个受体蛋白分为两类。影响多巴胺及其在大脑中的相互作用的药物有很多,包括合法的和非法的。帕金森氏病是一种会减少大脑中多巴胺量的疾病,由于多巴胺不能穿过血脑屏障,而左旋多巴可以,因此给予患者多巴胺前体左旋多巴。帕金森氏病患者也被给予一些多巴胺激动剂,这种疾病被称为不安腿综合征或RLS。其中的一些例子是罗匹尼罗和普拉克索。[6]
可以使用诸如哌醋甲酯(也称为利他林)之类的药物来治疗心理障碍,如注意力缺陷多动障碍(ADHD),这种药物可阻止突触前细胞对多巴胺的再摄取,从而增加留在突触中的多巴胺。突触间隙。突触多巴胺的这种增加将增加与突触后细胞受体的结合。其他非法和更有效的刺激性药物(例如可卡因)也使用这种机制。
血清素
神经递质血清素具有通过GPCR或LGIC受体介导突触传递的能力。血清素的兴奋性或抑制性突触后作用取决于在给定的大脑区域表达的受体类型。在抑郁症中用于调节5-羟色胺的最流行和广泛使用的药物被称为SSRI或选择性5-羟色胺再摄取抑制剂。这些药物抑制5-羟色胺转运回突触前神经元,使更多的5-羟色胺留在突触间隙中。
在发现SSRIs之前,还存在抑制分解5-羟色胺的酶的药物。 MAOI或单胺氧化酶抑制剂可增加突触中5-羟色胺的含量,但具有许多副作用,包括强烈的偏头痛和高血压。最终,这与药物与多种食物中发现的称为酪胺的常见化学物质相互作用有关。[7]
离子通道
位于神经元表面膜上的离子通道在动作电位期间允许钠离子的流入和钾离子的向外移动。 选择性地阻断这些离子通道将降低发生动作电位的可能性。 药物利鲁唑是一种阻断钠离子通道的神经保护药物。 由于这些通道无法激活,因此没有动作电位,并且神经元不会执行任何将化学信号转换为电信号的操作,并且信号不会继续前进。 这种药物既用作麻醉剂又用作镇静剂。[8]
行为神经药理学
多巴胺和5-羟色胺途径
行为神经药理学的一种形式致力于研究药物依赖性以及药物成瘾如何影响人的思维。大多数研究表明,通过神经化学奖励加强成瘾的大脑的主要部分是伏伏核。右图显示了多巴胺如何投射到该区域。长期酗酒会导致依赖和成瘾。下面介绍这种上瘾的发生方式。
乙醇
酒精的奖励和增强(即成瘾性)特性是通过其对中脑边缘奖励途径中多巴胺神经元的影响来介导的,该途径将腹侧被盖区域与伏隔核(NAcc)连接起来。[9] [10]酒精的主要作用之一是对NMDA受体的变构抑制作用和对GABAA受体的促进作用(例如,通过受体的变构调节,增强了GABAA受体介导的氯离子通量)。[11]高剂量时,乙醇也抑制神经元中的大多数配体门控离子通道和电压门控离子通道。[11]酒精会抑制小脑中的钠钾泵,这很可能会损害小脑的计算和身体协调。[12] [13]
大量饮酒会导致中脑边缘途径的突触释放多巴胺,进而增强突触后D1受体的激活。[9] [10]这些受体的激活通过蛋白激酶A触发突触后内部信号传导事件,最终使磷酸化cAMP反应元件结合蛋白(CREB)磷酸化,从而诱导CREB介导的基因表达变化。[9] [10]
在长期饮酒的情况下,乙醇的摄入同样会通过D1受体途径诱导CREB磷酸化,但也会通过磷酸化机制改变NMDA受体的功能; [9] [10] D1受体途径和CREB功能的适应性下调也会发生。 [9] [10]慢性消耗还与经由MAPK / ERK途径和CAMK介导的途径的突触后NMDA受体信号传导级联对CREB磷酸化和功能的影响有关。[10]中脑边缘途径中CREB功能的这些修饰诱导了NAcc中ΔFosB的表达(即,基因表达增加)[10],其中ΔFosB是“主要控制蛋白”,当在NAcc中过表达时,对于上瘾状态的发展和维持(即其在伏隔核中的过表达产生,然后直接调节强迫性饮酒)。[10] [14] [15] [16]
研究
帕金森氏病
帕金森氏病是一种神经退行性疾病,其表现为黑质中多巴胺能神经元的选择性丢失。如今,抗击这种疾病的最常用药物是左旋多巴或L-DOPA。多巴胺的前体可以穿透血脑屏障,而神经递质多巴胺则不能。已经进行了广泛的研究来确定左旋多巴是否比其他多巴胺受体激动剂更好地治疗帕金森氏病。一些人认为长期使用左旋多巴会损害神经保护作用,因此最终导致多巴胺能细胞死亡。尽管尚无体内或体外的证据,但仍有人认为长期使用多巴胺激动剂对患者更好。[17]
阿尔茨海默氏病
尽管针对阿尔茨海默氏病的病因提出了各种各样的假设,但该病的知识远不能完全解释,因此很难开发出治疗方法。在阿尔茨海默氏病患者的大脑中,已知神经元烟碱型乙酰胆碱(nACh)受体和NMDA受体均被下调。因此,已经开发了四种抗胆碱酯酶,并被美国食品和药物管理局(FDA)批准用于美国的治疗。但是,考虑到它们的副作用和有限的疗效,它们不是理想的药物。正在开发一种有前途的药物奈非西坦,用于治疗老年痴呆症和其他痴呆症患者,并且在增强nACh受体和NMDA受体的活性方面具有独特的作用。[18]
未来
随着技术的进步和作者对神经系统的了解,药物的开发将随着药物敏感性和特异性的提高而继续。 构效关系是神经药理学研究的主要领域。 试图通过改变生物活性化合物的化学结构来改变其活性或效力(即活性)。[8]
另见
Electrophysiology
Neuroendocrinology
Neuropsychopharmacology
Neurotechnology
Neurotransmission
结构-activity relationship
参考
Yeung AWK, Tzvetkov NT, Atanasov AG. When Neuroscience Meets Pharmacology: A Neuropharmacology Literature Analysis. Front Neurosci. 2018 Nov 16;12:852. doi: 10.3389/fnins.2018.00852.
Everitt, B. J.; Robbins, T. W. (2005). "Neural systems of reinforcement for drug addiction: from actions to habits to compulsion". Nature Neuroscience. 8 (11): 1481–1489. doi:10.1038/nn1579. PMID 16251991.
Wrobel, S. (2007). "Science, serotonin, and sadness: the biology of antidepressants: A series for the public". The FASEB Journal. 21 (13): 3404–17. doi:10.1096/fj.07-1102ufm. PMID 17967927.
Lovinger, D. M. (2008). "Communication Networks in the Brain Neurons, Receptors, Neurotransmitters, and Alcohol. [Review]". Alcohol Research & Health. 31 (3): 196–214.
Sigel, E (2002). "Mapping of the benzodiazepine recognition site on GABA(A) receptors". Current Topics in Medicinal Chemistry. 2 (8): 833–9. doi:10.2174/1568026023393444. PMID 12171574.
Winkelman, JW; Allen, RP; Tenzer, P; Hening, W (2007). "Restless legs syndrome: nonpharmacologic and pharmacologic treatments". Geriatrics. 62 (10): 13–6. PMID 17922563.
López-Muñoz, F.; Alamo, C. (2009). "Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today". Current Pharmaceutical Design. 15 (14): 1563–1586. doi:10.2174/138161209788168001. PMID 19442174.
Narahashi, T (2000). "Neuroreceptors and ion channels as the basis for drug action: past, present, and future". The Journal of Pharmacology and Experimental Therapeutics. 294 (1): 1–26. PMID 10871290.
"Alcoholism – Homo sapiens (human) Database entry". KEGG Pathway. 29 October 2014. Retrieved 9 February 2015. As one of the primary mediators of the rewarding effects of alcohol, dopaminergic ventral 被盖tal area (VTA) projections to the nucleus accumbens (NAc) have been identified. Acute exposure to alcohol stimulates dopamine release into the NAc, which activates D1 receptors, stimulating PKA signaling and subsequent CREB-mediated gene expression, whereas chronic alcohol exposure leads to an adaptive downregulation of this pathway, in particular of CREB function. The decreased CREB function in the NAc may promote the intake of drugs of abuse to achieve an increase in reward and thus may be involved in the regulation of positive affective states of addiction. PKA signaling also affects NMDA receptor activity and may play an important role in neuroadaptation in response to chronic alcohol exposure.
Kanehisa Laboratories (29 October 2014). "Alcoholism – Homo sapiens (human)". KEGG Pathway. Retrieved 31 October 2014.
Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 15: Reinforcement and Addictive Disorders". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. p. 372. ISBN 9780071481274. Despite the high concentrations required for its psychoactive effects, ethanol exerts specific actions on the brain. The initial effects of ethanol result primarily from facilitation of GABAA receptors and inhibition of NMDA glutamate receptors. At higher doses, ethanol also inhibits the functioning of most ligand- and voltage-gated ion channels. It is not known whether ethanol selectively affects these channels via direct low affinity binding or via nonspecific disruption of plasma membranes which then selectively influences these highly complex, multimeric, transmembrane proteins. Ethanol allosterically regulates the GABAA receptor to enhance GABA-activated Cl flux. The anxiolytic and sedative effects of ethanol, as well as those of barbiturates and benzodiazepines, result from enhancement of GABAergic function. Facilitation of GABAA receptor function is also believed to contribute to the reinforcing effects of these drugs. Not all GABAA receptors are ethanol sensitive. ... Ethanol also acts as an NMDA antagonist by allosterically inhibiting the passage of glutamate-activated Na+ and Ca2+ currents through the NMDA receptor. ... The reinforcing effects of ethanol are partly explained by its ability to activate mesolimbic dopamine circuitry, although it is not known whether this effect is mediated at the level of the VTA or NAc. It also is not known whether this activation of dopamine systems is caused primarily by facilitation of GABAA receptors or inhibition of NMDA receptors, or both. Ethanol reinforcement also is mediated in part by ethanol-induced release of endogenous opioid peptides within the mesolimbic dopamine system, although whether the VTA or NAc is the predominant site of such action is not yet known. Accordingly, the opioid receptor antagonist naltrexone reduces ethanol self-administration in animals and is used with modest effect to treat alcoholism in humans.
Forrest MD (April 2015). "Simulation of alcohol action upon a detailed Purkinje neuron model and a simpler surrogate model that runs >400 times faster". BMC Neuroscience. 16 (27): 27. doi:10.1186/s12868-015-0162-6. PMC 4417229. PMID 25928094.
Forrest, Michael (April 2015). "The neuroscience reason we fall over when drunk". Science 2.0. Retrieved January 2, 2019.
Ruffle JK (November 2014). "Molecular neurobiology of addiction: what's all the (Δ)FosB about?". Am J Drug Alcohol Abuse. 40 (6): 428–437. doi:10.3109/00952990.2014.933840. PMID 25083822.
ΔFosB as a therapeutic biomarker
The strong correlation between chronic drug exposure and ΔFosB provides novel opportunities for targeted therapies in addiction (118), and suggests 方法 to analyze their efficacy (119). Over the past two decades, research has progressed from identifying ΔFosB induction to investigating its subsequent action (38). It is likely that ΔFosB research will now progress into a new era – the use of ΔFosB as a biomarker. If ΔFosB detection is indicative of chronic drug exposure (and is at least partly responsible for dependence of the substance), then its monitoring for therapeutic efficacy in interventional studies is a suitable biomarker (Figure 2). Examples of therapeutic avenues are discussed herein. ...
结论
ΔFosB is an essential transcription factor implicated in the molecular and behavioral pathways of addiction following repeated drug exposure. The formation of ΔFosB in multiple brain regions, and the molecular pathway leading to the formation of AP-1 complexes is well understood. The establishment of a functional purpose for ΔFosB has allowed further determination as to some of the key aspects of its molecular cascades, involving effectors such as GluR2 (87,88), Cdk5 (93) and NFkB (100). Moreover, many of these molecular changes identified are now directly linked to the structural, physiological and behavioral changes observed following chronic drug exposure (60,95,97,102). New frontiers of research investigating the molecular roles of ΔFosB have been opened by epigenetic studies, and recent advances have illustrated the role of ΔFosB acting on DNA and histones, truly as a ‘‘molecular switch’’ (34). As a consequence of our improved understanding of ΔFosB in addiction, it is possible to evaluate the addictive potential of current medications (119), as well as use it as a biomarker for assessing the efficacy of therapeutic interventions (121,122,124). Some of these proposed interventions have limitations (125) or are in their infancy (75). However, it is hoped that some of these preliminary findings may lead to innovative treatments, which are much needed in addiction.
Nestler EJ (December 2013). "Cellular basis of memory for addiction". Dialogues Clin Neurosci. 15 (4): 431–443. PMC 3898681. PMID 24459410. DESPITE THE IMPORTANCE OF NUMEROUS PSYCHOSOCIAL FACTORS, AT ITS CORE, DRUG ADDICTION INVOLVES A BIOLOGICAL PROCESS: the ability of repeated exposure to a drug of abuse to induce changes in a vulnerable brain that drive the compulsive seeking and taking of drugs, and loss of control over drug use, that define a state of addiction. ... A large body of literature has demonstrated that such ΔFosB induction in D1-type NAc neurons increases an animal's sensitivity to drug as well as natural rewards and promotes drug self-administration, presumably through a process of positive reinforcement
Robison AJ, Nestler EJ (November 2011). "Transcriptional and epigenetic mechanisms of addiction". Nat. Rev. Neurosci. 12 (11): 623–637. doi:10.1038/nrn3111. PMC 3272277. PMID 21989194. ΔFosB has been linked directly to several addiction-related behaviors ... Importantly, genetic or viral overexpression of ΔJunD, a dominant negative mutant of JunD which antagonizes ΔFosB- and other AP-1-mediated transcriptional activity, in the NAc or OFC blocks these key effects of drug exposure14,22–24. This indicates that ΔFosB is both necessary and sufficient for many of the changes wrought in the brain by chronic drug exposure. ΔFosB is also induced in D1-type NAc MSNs by chronic consumption of several natural rewards, including sucrose, high fat food, sex, wheel running, where it promotes that consumption14,26–30. This implicates ΔFosB in the regulation of natural rewards under normal conditions and perhaps during pathological addictive-like states. ... ΔFosB serves as one of the master control proteins governing this structural plasticity.
Shin, J. Y.; Park, H. J.; Ahn, Y. H.; Lee, P. H. (2009). "Neuroprotective effect of l-dopa on dopaminergic neurons is comparable to pramipexol in MPTP-treated animal model of Parkinson's disease: a direct comparison study". Journal of Neurochemistry. 111 (4): 1042–50. doi:10.1111/j.1471-4159.2009.06381.x. PMID 19765187.
Narahashi, T; Marszalec, W; Moriguchi, S; Yeh, JZ; Zhao, X (2003). "Unique mechanism of action of Alzheimer's drugs on brain nicotinic acetylcholine receptors and NMDA receptors". Life Sciences. 74 (2–3): 281–91. doi:10.1016/j.lfs.2003.09.015. PMID 14607256. |