马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
×
行为表观遗传学是研究表观遗传学在塑造动物(包括人类)行为中的作用的研究领域。[1]这是一门实验科学,旨在解释营养如何塑造自然[2],其中自然是指生物遗传[3],而营养实际上是指生命周期中发生的一切事情(例如,社会经验,饮食和营养,和接触毒素)。[4]行为表观遗传学试图提供一种框架,以了解基因的表达如何受到经验和环境的影响[5],从而在行为,[6]认知,[2]个性,[7]和心理健康方面产生个体差异。[8] [9]
表观遗传基因调控涉及DNA序列以外的变化,包括组蛋白(包裹DNA的蛋白质)和DNA甲基化的变化。[10] [4] [11]这些表观遗传学变化可以影响发育大脑中神经元的生长[12],也可以改变成年大脑中神经元的活性。[13] [14]这些对神经元结构和功能的表观遗传变化共同可以对生物体的行为产生显著影响。[1]
内容
1 背景
2 发现
3 心理学的表观遗传学研究
3.1 焦虑与冒险
3.2 压力
4 认知
4.1 学习与记忆
5 心理病理与心理健康
5.1 吸毒
5.2 饮食失调和肥胖
5.3 精神分裂症
5.4 躁郁症
5.5 重度抑郁症
5.6 精神病
5.7 自杀
6 社交昆虫
7 局限性和未来方向
8 参考
背景
主条目:表观遗传学
在生物学,特别是遗传学中,表观遗传学是对基因活性的遗传性变化的研究,该遗传性变化不是由DNA序列的变化引起的。 该术语也可以用来描述对细胞转录潜能的稳定,长期变化的研究,这种变化不一定是可遗传的。[15] [16]
产生这种变化的机制的例子有DNA甲基化[17]和组蛋白修饰[18],它们各自都可以改变基因的表达方式,而不会改变基础的DNA序列。 基因表达可通过附着于DNA沉默区的阻遏蛋白的作用来控制。
表观基因组的修饰不会改变DNA。
DNA甲基化使基因“关闭” –结果导致无法从DNA读取遗传信息;去除甲基标签可以使基因重新“打开”。[19] [20]
表观遗传学对生物体的发育有很大影响,并且可以改变个体性状的表达。[11]表观遗传变化不仅发生在胎儿发育中,而且在整个人类寿命中都发生。[4] [21]由于某些表观遗传修饰可以从一代传给下一代,[22]后代可能会受到父母中发生的表观遗传改变的影响。[22]
发现
表观遗传学影响行为的第一个记录的例子是由迈克尔·梅尼和莫西·希夫提供的。[23] 2004年,他们在蒙特利尔的麦吉尔大学工作时,发现母鼠在婴儿期的最初几周提供的哺育类型和数量决定了该鼠在晚年生活中对压力的反应。[4]这种应激敏感性与大脑中糖皮质激素受体表达的下调有关。反过来,这种下调被发现是糖皮质激素受体基因启动子区域甲基化程度的结果。[1]出生后立即,Meneyy和Szyf发现甲基在所有大鼠幼崽中均抑制了糖皮质激素受体基因,使该基因无法从组蛋白上解脱出来进行转录,从而降低了应激反应。发现来自母鼠的养育行为刺激了应力信号通路的激活,该信号通路从DNA中去除了甲基。这释放了紧密缠绕的基因,使其暴露于转录。糖皮质激素基因被激活,导致应激反应降低。受到较少养育的幼鼠在整个寿命中对压力更加敏感。
由于普遍缺乏用于测量表观遗传变化的人脑组织,[1]在啮齿动物中的这项开创性工作很难在人类中复制。[1]
心理学的表观遗传学研究
焦虑与冒险
单卵双胞胎是同卵双胞胎。 孪生研究有助于揭示与心理学各个方面有关的表观遗传学差异。
在2008年发表的一项针对人类的小型临床研究中,表观遗传学差异与单卵双生子的冒险和对压力的反应差异有关。[24] 该研究确定了双胞胎具有不同的生活路径,其中一个双胞胎表现出冒险行为,另一双表现出规避风险行为。 DLX1基因附近的CpG岛的DNA甲基化的表观遗传学差异与不同的行为相关。[24] 这项孪生研究的作者指出,尽管表观遗传标记与差异性格特征之间存在关联,但表观遗传学无法预测诸如职业选择之类的复杂决策过程。[24]
强调
下丘脑垂体肾上腺轴参与人的应激反应。
动物和人类研究发现,婴儿期护理不善与表观遗传变化之间的相关性与忽视所致的长期损害相关。[25] [26] [27]
对大鼠的研究表明,就父母的后代舔而言,孕产妇保健与表观遗传变化之间存在相关性。[25]高水平的舔结果结果可长期降低应激反应,如行为和生化指标在下丘脑-垂体-肾上腺轴(HPA)中进行测量。此外,在舔食水平高的后代中发现糖皮质激素受体基因的DNA甲基化水平降低。糖皮质激素受体在调节HPA中起关键作用。[25]在舔食水平低的后代中发现了相反的情况,当幼仔被切换时,表观遗传改变被逆转。这项研究为潜在的表观遗传机制提供了证据。[25]来自相同设置的实验的进一步支持来自使用可以增加或减少甲基化的药物。[26]最后,父母照顾的表观遗传变异可以从一代传给下一代,从母亲传给女性。受到较高父母关怀(即高舔舔)的女性后代成为从事高舔舔行为的母亲,而受到较少舔舔的后代成为从事较少舔舔行为的母亲。[25]
在人类中,一项小型的临床研究显示,产前暴露于母亲的情绪与基因表达之间的关系导致遗传对后代的反应性增加。[4]检查了三组婴儿:那些使用5-羟色胺再摄取抑制剂治疗抑郁症的母亲所生的婴儿;由沮丧的母亲所生的未接受抑郁症治疗的人;以及那些非抑郁母亲所生。产前暴露于抑郁/焦虑情绪与糖皮质激素受体基因的DNA甲基化增加和HPA轴应激反应性增加有关。[25]这些发现与母亲是否正在接受药物治疗抑郁症无关。[25]
最近的研究还表明,母婴糖皮质激素受体的甲基化与母婴在视频上的互动反应相关的神经活动具有相关性。[28]这些婴儿的纵向随访对于了解这一高风险人群的早期护理对儿童表观遗传学和行为的影响非常重要。
认识
学习与记忆
2010年的一篇综述讨论了DNA甲基化在记忆形成和存储中的作用,但涉及神经元功能,记忆和甲基化逆转的确切机制仍不清楚。[29]
在啮齿动物中的研究发现,在学习和记忆方面,环境对与认知有关的表观遗传变化有影响; [4]与组蛋白乙酰化增加相关的环境富集,并通过施用组蛋白脱乙酰基酶抑制剂诱导的树突萌发来验证,突触的数量,恢复的学习行为以及对长期记忆的访问。[1] [30]研究还将学习和长期记忆形成与正常功能,未受损大脑的动物中海马和皮层的可逆表观遗传学变化联系起来。[1] [31]在人体研究中,阿尔茨海默氏病患者的死后大脑显示出组蛋白去乙酰化酶水平升高。[32] [33]
心理病理学与心理健康
吸毒成瘾
更多信息:ΔFosB和G9a
信号传递伏隔核中级联反应,导致精神刺激性成瘾
参与心理刺激成瘾的信号级联
上图包含可单击的链接此图描述了大脑长期处于高剂量的精神兴奋剂暴露引起的大脑奖励中心信号传递事件,这些刺激剂会增加突触多巴胺的浓度,例如苯丙胺,甲基苯丙胺和苯乙胺。此类精神刺激药使突触前多巴胺和谷氨酸共释放后,[34] [35]这些神经递质的突触后受体通过cAMP依赖性途径和钙依赖性途径触发内部信号传导事件,最终导致CREB磷酸化增加。[34] [36] [37]磷酸化的CREB增加了ΔFosB的水平,而后者又借助共加压子抑制了c-Fos基因; [34] [38] [39] c-Fos的抑制作用是一种分子开关,能够使ΔFosB在神经元中积累。 [40]高度稳定(磷酸化)的ΔFosB形式在神经元中持续1-2个月,在此过程中反复与高剂量刺激物反复接触后会缓慢累积[38] [39]。 ΔFosB充当“主要控制蛋白之一”,在大脑中产生与成瘾相关的结构变化,并在其下游靶标(例如核因子кB)的充分积累下诱导成瘾状态。[ 38] [39]
环境因素和表观遗传因素似乎共同作用,增加了成瘾的风险。[41]例如,事实证明,环境压力会增加滥用药物的风险。[42]为了应对压力,可以使用酒精和毒品逃脱。[43]但是,一旦开始滥用药物,表观遗传改变可能会进一步加剧与成瘾有关的生物学和行为改变。[41]
即使是短期的药物滥用,也会通过DNA甲基化和组蛋白修饰在啮齿动物的大脑中产生持久的表观遗传学变化[41]。在涉及乙醇,尼古丁,可卡因,苯丙胺,甲基苯丙胺和鸦片制剂的啮齿动物的研究中观察到表观遗传学修饰[4]。具体而言,这些表观遗传学改变会修饰基因表达,从而增加个体在将来重复摄入过量药物的脆弱性。反过来,滥用药物的增加会导致啮齿动物奖励系统各个组成部分的表观遗传发生更大的变化[41](例如伏伏核[44])。因此,出现了一个循环,在该循环中,享乐奖励区域的变化有助于与成瘾,维持成瘾和复发的可能性增加相关的长期神经和行为变化。[41]在人类中,饮酒已显示出会产生表观遗传变化,从而增加了对酒精的渴望。因此,表观遗传修饰可能在从控制摄入量到失去控制酒精消费的过程中起作用。[45]这些改变可能是长期的,正如戒烟十年后仍具有尼古丁相关表观遗传变化的吸烟者所证明的。[46]因此,表观遗传学修饰[41]可能解释了通常与成瘾有关的某些行为变化。这些包括:重复的习惯会增加患病的风险,以及个人和社会问题;需要立即得到满足;治疗后复发率高;以及失去控制的感觉。[47]
有关表观遗传变化的证据来自人类研究,涉及酒精,[48]尼古丁和阿片类药物滥用。由苯丙胺和可卡因滥用引起的表观遗传变化的证据来自动物研究。在动物中,父亲的与药物相关的表观遗传学变化也已显示出对后代不利的影响,它们的空间工作记忆能力较差,注意力下降和脑容量下降。[49]
饮食失调和肥胖
更多信息:ΔFosB
表观遗传的变化可能会通过影响早期环境和整个生命周期而有助于促进进食障碍的发展和维持。[21]由于产妇压力,行为和饮食而引起的产前表观遗传变化可能会使后代易患持续性焦虑症和焦虑症。这些焦虑症会加剧饮食失调和肥胖症的发作,甚至在饮食失调恢复后仍然存在。[50]
在寿命中积累的表观遗传差异可能解释了在单卵双胞胎中观察到的饮食失调差异。在青春期,性激素可能会对基因表达产生表观遗传变化(通过DNA甲基化),因此与女性相比,男性饮食失调的发生率更高。总体而言,表观遗传学促进了与暴饮暴食有关的持续性,不受控制的自我控制行为。[21]
精神分裂症
更多信息:精神分裂症的表观遗传学
精神分裂症患者的死后大脑中的表观遗传变化包括谷氨酸能基因(即NMDA受体亚基基因NR3B和AMPA受体亚基基因GRIA2的启动子)的低甲基化与神经递质谷氨酸水平的升高有关。[ 51]由于谷氨酸是最普遍,快速,兴奋的神经递质,因此水平升高可能导致与精神分裂症有关的精神病发作。与患有这种疾病的女性相比,精神分裂症的男性中发现了影响更多基因的表观遗传变化。[52]
人口研究建立了一个联系,将老年父亲所生子女的精神分裂症联系起来。[53] [54]具体来说,父亲出生的35岁以上的孩子患精神分裂症的可能性高三倍。[54]已经证明,影响许多基因的人类男性精子细胞的表观遗传功能障碍会随着年龄的增长而增加。 [52] [54] [未通过验证]为此目的,已证明毒素[52] [54](例如空气污染物)会增加表观遗传分化。从钢厂和公路暴露在环境空气中的动物表现出剧烈的表观遗传变化,这些变化在暴露后仍持续存在。[55]因此,老年人的疙?可能发生类似的表观遗传学变化。[54]精神分裂症的研究提供了证据,表明应该重新评估精神病理学领域的“自然与养育”辩论,以适应基因和环境协同工作的概念。因此,已经提出了许多其他环境因素(例如营养缺乏和使用大麻)来通过表观遗传学来增加精神分裂症(例如精神分裂症)的易感性。[54]
双相情感障碍
尚无双相情感障碍表观遗传修饰的证据。[56]一项研究发现患有双相情感障碍的人的验尸后大脑样本中的前额叶酶(即膜结合的儿茶酚-O-甲基转移酶或COMT)基因启动子的甲基化不足。 COMT是一种在突触中代谢多巴胺的酶。这些发现表明启动子的低甲基化导致了酶的过表达。反过来,这导致大脑中多巴胺水平下降的加剧。这些发现提供了证据,证明前额叶的表观遗传修饰是双相情感障碍的危险因素。[57]然而,第二项研究发现双相个体的死后大脑没有表观遗传学差异。[58]
严重抑郁症
从神经科学的角度,人们对主要抑郁症(MDD)的原因了解甚少。[59]导致糖皮质激素受体表达改变的表观遗传学变化及其对上述HPA应激系统的影响,也已被用于尝试理解MDD。[60]
动物模型中的许多工作都集中于通过过度激活压力轴间接降低脑源性神经营养因子(BDNF)。[61] [62]对各种抑郁症啮齿动物模型的研究通常涉及诱导压力,也发现了BDNF的直接表观遗传调控。[63]
精神病
表观遗传学可能通过甲基化和组蛋白修饰与心理行为有关。[64]这些过程是可遗传的,但也可能受到诸如吸烟和虐待等环境因素的影响。[65]表观遗传学可能是环境影响基因组表达的机制之一。[66]研究还将女性烟碱,酒精依赖,多动症和药物滥用相关基因的甲基化联系起来。[67] [68] [69] [70]在研究环境与精神病患者的遗传之间的关系时,表观遗传调控以及甲基化分布分析可能会发挥越来越重要的作用。[70]
自杀
一项针对24名自杀完成者的大脑的研究发现,虐待儿童的受害者体内糖皮质激素受体水平降低,并且伴随有表观遗传学改变。其中有12名有虐待儿童史,有12名没有虐待儿童史。[71]
社会昆虫
几项研究表明,DNA胞嘧啶甲基化与昆虫(如蜜蜂和蚂蚁)的社会行为有关。在蜜蜂中,当养蜂人从蜂巢的工作转移到觅食时,胞嘧啶甲基化标志正在改变。当觅食蜂被调换做护士职责时,胞嘧啶甲基化标记也被调换。[72]敲打幼虫中的DNMT3,使工人变成了女王般的表型。[73]皇后和工人是两种不同的种姓,具有不同的形态,行为和生理学。 DNMT3沉默研究也表明,DNA甲基化可能调节基因的选择性剪接和mRNA的成熟。[74]
局限性和未来方向
许多研究人员向人类表观基因组联盟提供了信息。[75]未来研究的目的是重新编程表观遗传变化,以帮助解决成瘾,精神疾病,与年龄相关的变化,[2]记忆力减退和其他问题。[1]然而,庞大的基于联合体的数据使分析变得困难。[2]大多数研究也集中于一个基因。[76]实际上,许多基因及其之间的相互作用可能会导致人格,行为和健康方面的个体差异。[77]由于社会科学家经常处理许多变量,因此确定受影响基因的数量也带来了方法上的挑战。有人主张医学研究人员,遗传学家和社会科学家之间应加强合作,以增加这一研究领域的知识。[78]
人类大脑组织的有限访问对人类研究提出了挑战。[2]尚不知道血液和(非脑)组织的表观遗传学变化是否与大脑中的修饰平行,因此更加依赖于大脑研究。[75]尽管一些表观遗传学研究已将发现从动物转化为人类[71],但一些研究人员对将动物研究推论到人类的做法提出了警告。[1]一种观点指出,当动物研究不考虑亚细胞和细胞成分,器官以及整个个体与环境的影响如何相互作用时,结果过于简化而无法解释行为。[77]
一些研究人员指出,表观遗传学观点可能会被纳入药物治疗。[8]其他人警告说,由于已知药物会修饰多个基因的活性,因此有必要进行更多的研究,因此可能会导致严重的副作用。[1]但是,最终目标是找到表观遗传变化的模式,这些模式可用于治疗精神疾病,并例如逆转童年压力源的影响。如果这种可治疗的模式最终得以确立,那么无法接触活人的大脑来识别它们就构成了药物治疗的障碍。[75]未来的研究可能还会关注表观遗传学的变化,这些变化会介导心理治疗对人格和行为的影响。[25]
大多数表观遗传研究是相关的。它只是建立联系。需要更多的实验研究来帮助建立因果关系。[79]缺乏资源也限制了代际研究的数量。[2]因此,推进纵向[78]和多代,依赖经验的研究对于进一步了解表观遗传学在心理学中的作用至关重要。[5]
另见
Behavioral genetics
Behavioral neuroscience
Epigenetics of anxiety and stress-related disorders
Evolutionary neuroscience
Neuroscience
Personality psychology
参考
Miller G (Jul 2010). "Epigenetics. The seductive allure of 行为表观遗传学". Science. 329 (5987): 24–7. Bibcode:2010Sci...329...24M. doi:10.1126/science.329.5987.24. PMID 20595592.
Powledge T (2011). "行为表观遗传学: How nurture shapes nature". BioScience. 61 (8): 588–592. doi:10.1525/bio.2011.61.8.4.
Kail RV, Barnfield A (2011). Children and Their Development, Second Canadian Edition with MyDevelopmentLab. Toronto: Pearson Education Canada. ISBN 978-0-13-255770-2.
Moore DS (2015). The 发展 Genome: An Introduction to 行为表观遗传学 (1st ed.). Oxford University Press. ISBN 978-0-19-992234-5.
Champagne FA, Mashoodh R (2012). "Genes in context: Gene-environment interplay and the origins of individual differences in behaviour". Current Directions in Psychological Science. 18 (3): 127–131. doi:10.1111/j.1467-8721.2009.01622.x.
Zhang TY, Meaney MJ (2010). "Epigenetics and the environmental regulation of the genome and its function". Annual Review of Psychology. 61: 439–66, C1–3. doi:10.1146/annurev.psych.60.110707.163625. PMID 19958180.
Bagot RC, Meaney MJ (Aug 2010). "Epigenetics and the biological basis of gene x environment interactions". Journal of the American Academy of Child and Adolescent Psychiatry. 49 (8): 752–71. doi:10.1016/j.jaac.2010.06.001. PMID 20643310.
Stuffrein-Roberts S, Joyce PR, Kennedy MA (Feb 2008). "Role of epigenetics in mental disorders". The Australian and New Zealand Journal of Psychiatry. 42 (2): 97–107. doi:10.1080/00048670701787495. PMID 18197504.
Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, Jia P, Assadzadeh A, Flanagan J, Schumacher A, Wang SC, Petronis A (Mar 2008). "Epigenomic profiling reveals DNA-methylation changes associated with major psychosis". American Journal of Human Genetics. 82 (3): 696–711. doi:10.1016/j.ajhg.2008.01.008. PMC 2427301. PMID 18319075.
Rana, Ajay Kumar (24 January 2018). "Crime investigation through DNA methylation analysis: 方法 and applications in forensics". Egyptian Journal of Forensic Sciences. 8 (1). doi:10.1186/s41935-018-0042-1.
Pennisi E (Aug 2001). "Behind the scenes of gene expression". Science. 293 (5532): 1064–7. doi:10.1126/science.293.5532.1064. PMID 11498570.
Juliandi B, Abematsu M, Nakashima K (Aug 2010). "Epigenetic regulation in neural stem cell differentiation". Development, Growth & Differentiation. 52 (6): 493–504. doi:10.1111/j.1440-169X.2010.01175.x. PMID 20608952.
Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H (Nov 2010). "Epigenetic choreographers of neurogenesis in the adult mammalian brain". Nature Neuroscience. 13 (11): 1338–44. doi:10.1038/nn.2672. PMC 3324277. PMID 20975758.
Sun J, Sun J, Ming GL, Song H (Mar 2011). "Epigenetic regulation of neurogenesis in the adult mammalian brain". The European Journal of Neuroscience. 33 (6): 1087–93. doi:10.1111/j.1460-9568.2011.07607.x. PMC 3076719. PMID 21395852.
Bird A (May 2007). "Perceptions of epigenetics". Nature. 447 (7143): 396–8. Bibcode:2007Natur.447..396B. doi:10.1038/nature05913. PMID 17522671.
"概述 of the Roadmap Epigenomics Project".
Mehler MF (Dec 2008). "Epigenetic principles and mechanisms underlying nervous system functions in health and disease". Progress in Neurobiology. 86 (4): 305–41. doi:10.1016/j.pneurobio.2008.10.001. PMC 2636693. PMID 18940229.
Maze I, Nestler EJ (Jan 2011). "The epigenetic landscape of addiction". Annals of the New York Academy of Sciences. 1216 (1): 99–113. Bibcode:2011NYASA1216...99M. doi:10.1111/j.1749-6632.2010.05893.x. PMC 3071632. PMID 21272014.
Reik W (May 2007). "Stability and flexibility of epigenetic gene regulation in mammalian development". Nature. 447 (7143): 425–32. Bibcode:2007Natur.447..425R. doi:10.1038/nature05918. PMID 17522676.
Gottesman II, Hanson DR (2005). "Human development: biological and genetic processes". Annual Review of Psychology. 56: 263–86. doi:10.1146/annurev.psych.56.091103.070208. PMID 15709936.
Campbell IC, Mill J, Uher R, Schmidt U (Jan 2011). "Eating disorders, gene-environment interactions and epigenetics". Neuroscience and Biobehavioral Reviews. 35 (3): 784–93. doi:10.1016/j.neubiorev.2010.09.012. PMID 20888360.
Goto T, Monk M (Jun 1998). "Regulation of X-chromosome inactivation in development in mice and humans". Microbiology and Molecular Biology Reviews. 62 (2): 362–78. PMC 98919. PMID 9618446.
Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (August 2004). "Epigenetic programming by maternal behavior". Nature Neuroscience. 7 (8): 847–54. doi:10.1038/nn1276. PMID 15220929.
Kaminsky Z, Petronis A, Wang SC, Levine B, Ghaffar O, Floden D, Feinstein A (Feb 2008). "Epigenetics of personality traits: an illustrative study of identical twins discordant for risk-taking behavior". Twin Research and Human Genetics. 11 (1): 1–11. doi:10.1375/twin.11.1.1. PMID 18251670.
Masterpasqua F (2009). "Psychology and epigenetics". Review of General Psychology. 13 (3): 194–201. doi:10.1037/a0016301.
Szyf M, McGowan P, Meaney MJ (Jan 2008). "The social environment and the epigenome". Environmental and Molecular Mutagenesis. 49 (1): 46–60. doi:10.1002/em.20357. PMID 18095330.
González-Pardo H, Pérez álvarez M (Feb 2013). "Epigenetics and its implications for Psychology". Psicothema. 25 (1): 3–12. doi:10.7334/psicothema2012.327. PMID 23336536.
Schechter DS, Moser DA, Giacobino A, Stenz L, Gex-Fabry M, Adouan W, Cordero MI, Suardi F, Manini A, Sancho-Rossignol A, Merminod G, Aue T, Ansermet F, Dayer AG, Rusconi-Serpa S. (epub May 29, 2015) Methylation of NR3C1 is related to maternal PTSD, parenting stress and maternal medial prefrontal cortical activity in response to child separation among mothers with histories of violence exposure. Frontiers in Psychology. http://journal.frontiersin.org/a ... g.2015.00690/摘要
Day JJ, Sweatt JD (Nov 2010). "DNA methylation and memory formation". Nature Neuroscience. 13 (11): 1319–23. doi:10.1038/nn.2666. PMC 3130618. PMID 20975755.
Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH (May 2007). "Recovery of learning and memory is associated with chromatin remodelling". Nature. 447 (7141): 178–82. Bibcode:2007Natur.447..178F. doi:10.1038/nature05772. PMID 17468743.
Gupta S, Kim SY, Artis S, Molfese DL, Schumacher A, Sweatt JD, Paylor RE, Lubin FD (Mar 2010). "Histone methylation regulates memory formation". The Journal of Neuroscience. 30 (10): 3589–99. doi:10.1523/JNEUROSCI.3732-09.2010. PMC 2859898. PMID 20219993.
Gräff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, Nieland TJ, Fass DM, Kao PF, Kahn M, Su SC, Samiei A, Joseph N, Haggarty SJ, Delalle I, Tsai LH (Mar 2012). "An epigenetic blockade of cognitive functions in the neurodegenerating brain". Nature. 483 (7388): 222–6. Bibcode:2012Natur.483..222G. doi:10.1038/nature10849. PMC 3498952. PMID 22388814.
Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A (May 2010). "Altered histone acetylation is associated with age-dependent memory impairment in mice". Science. 328 (5979): 753–6. Bibcode:2010Sci...328..753P. doi:10.1126/science.1186088. PMID 20448184.
Renthal W, Nestler EJ (September 2009). "Chromatin regulation in drug addiction and depression". Dialogues Clin. Neurosci. 11 (3): 257–268. PMC 2834246. PMID 19877494. [Psychostimulants] increase cAMP levels in striatum, which activates protein kinase A (PKA) and leads to phosphorylation of its targets. This includes the cAMP response element binding protein (CREB), the phosphorylation of which induces its association with the histone acetyltransferase, CREB binding protein (CBP) to acetylate histones and facilitate gene activation. This is known to occur on many genes including fosB and c-fos in response to psychostimulant exposure. ΔFosB is also upregulated by chronic psychostimulant treatments, and is known to activate certain genes (eg, cdk5) and repress others (eg, c-fos) where it recruits HDAC1 as a corepressor. ... Chronic exposure to psychostimulants increases glutamatergic [signaling] from the prefrontal cortex to the NAc. Glutamatergic signaling elevates Ca2+ levels in NAc postsynaptic elements where it activates CaMK (calcium/calmodulin protein kinases) signaling, which, in addition to phosphorylating CREB, also phosphorylates HDAC5.
Figure 2: Psychostimulant-induced signaling events
Broussard JI (January 2012). "Co-transmission of dopamine and glutamate". J. Gen. Physiol. 139 (1): 93–96. doi:10.1085/jgp.201110659. PMC 3250102. PMID 22200950. Coincident and convergent input often induces plasticity on a postsynaptic neuron. The NAc integrates processed information about the environment from basolateral amygdala, 海马, and prefrontal cortex (PFC), as well as projections from 中脑 dopamine neurons. Previous studies have demonstrated how dopamine modulates this integrative process. For example, high frequency stimulation potentiates hippocampal inputs to the NAc while simultaneously depressing PFC synapses (Goto and Grace, 2005). The converse was also shown to be true; stimulation at PFC potentiates PFC–NAc synapses but depresses hippocampal–NAc synapses. In light of the new functional evidence of 中脑 dopamine/glutamate co-transmission (参考 above), new experiments of NAc function will have to test whether 中脑 glutamatergic inputs bias or filter either limbic or cortical inputs to guide goal-directed behavior.
Kanehisa Laboratories (10 October 2014). "Amphetamine – Homo sapiens (human)". KEGG Pathway. Retrieved 31 October 2014. Most addictive drugs increase extracellular concentrations of dopamine (DA) in nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), projection areas of mesocorticolimbic DA neurons and key components of the "brain reward circuit". Amphetamine achieves this elevation in extracellular levels of DA by promoting efflux from synaptic terminals. ... Chronic exposure to amphetamine induces a unique transcription factor delta FosB, which plays an essential role in long-term adaptive changes in the brain.
Cadet JL, Brannock C, Jayanthi S, Krasnova IN (2015). "Transcriptional and epigenetic substrates of methamphetamine addiction and withdrawal: evidence from a long-access self-administration model in the rat". Mol. Neurobiol. 51 (2): 696–717. doi:10.1007/s12035-014-8776-8. PMC 4359351. PMID 24939695. Figure 1
Robison AJ, Nestler EJ (November 2011). "Transcriptional and epigenetic mechanisms of addiction". Nat. Rev. Neurosci. 12 (11): 623–637. doi:10.1038/nrn3111. PMC 3272277. PMID 21989194. ΔFosB serves as one of the master control proteins governing this structural plasticity. ... ΔFosB also represses G9a expression, leading to reduced repressive histone methylation at the cdk5 gene. The net result is gene activation and increased CDK5 expression. ... In contrast, ΔFosB binds to the c-fos gene and recruits several co-repressors, including HDAC1 (histone deacetylase 1) and SIRT 1 (sirtuin 1). ... The net result is c-fos gene repression.
Figure 4: Epigenetic basis of drug regulation of gene expression
Nestler EJ (December 2012). "Transcriptional mechanisms of drug addiction". Clin. Psychopharmacol. Neurosci. 10 (3): 136–143. doi:10.9758/cpn.2012.10.3.136. PMC 3569166. PMID 23430970. The 35-37 kD ΔFosB isoforms accumulate with chronic drug exposure due to their extraordinarily long half-lives. ... As a result of its stability, the ΔFosB protein persists in neurons for at least several weeks after cessation of drug exposure. ... ΔFosB overexpression in nucleus accumbens induces NFκB ... In contrast, the ability of ΔFosB to repress the c-Fos gene occurs in concert with the recruitment of a histone deacetylase and presumably several other repressive proteins such as a repressive histone methyltransferase
Nestler EJ (October 2008). "Review. Transcriptional mechanisms of addiction: role of DeltaFosB". Philos. Trans. R. Soc. Lond., B, Biol. Sci. 363 (1507): 3245–3255. doi:10.1098/rstb.2008.0067. PMC 2607320. PMID 18640924. Recent evidence has shown that ΔFosB also represses the c-fos gene that helps create the molecular switch—from the induction of several short-lived Fos family proteins after acute drug exposure to the predominant accumulation of ΔFosB after chronic drug exposure
Wong CC, Mill J, Fernandes C (Mar 2011). "Drugs and addiction: an introduction to epigenetics". Addiction. 106 (3): 480–9. doi:10.1111/j.1360-0443.2010.03321.x. PMID 21205049.
Andersen SL, Teicher MH (Apr 2009). "Desperately driven and no brakes: developmental stress exposure and subsequent risk for substance abuse". Neuroscience and Biobehavioral Reviews. 33 (4): 516–24. doi:10.1016/j.neubiorev.2008.09.009. PMC 2688959. PMID 18938197.
Carver C (2010). "Coping". In Baum A, Contrada RJ (eds.). The Handbook of Stress Science: Biology, Psychology, and Health. New York: Springer Publishing Company. p. 223. ISBN 978-0-8261-1471-6.
Renthal W, Nestler EJ (Aug 2008). "Epigenetic mechanisms in drug addiction". Trends in Molecular Medicine. 14 (8): 341–50. doi:10.1016/j.molmed.2008.06.004. PMC 2753378. PMID 18635399.
Naassila M (2011). "摘要s of ESBRA 2011, European Society for Biomedical Research on Alcoholism. Vienna, Austria. September 4–7, 2011". Alcohol and Alcoholism. 46 Suppl 1 (Suppl 1): i1–63. doi:10.1093/alcalc/agr085. PMID 21863600.
Launay JM, Del Pino M, Chironi G, Callebert J, Peoc'h K, Mégnien JL, Mallet J, Simon A, Rendu F (2009). "Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation". PLOS ONE. 4 (11): e7959. Bibcode:2009PLoSO...4.7959L. doi:10.1371/journal.pone.0007959. PMC 2775922. PMID 19956754.
Marlatt GA, Baer JS, Donovan DM, Kivlahan DR (1988). "Addictive behaviors: etiology and treatment". Annual Review of Psychology. 39: 223–52. doi:10.1146/annurev.ps.39.020188.001255. PMID 3278676.
Bnsch D, Lenz B, Reulbach U, Kornhuber J, Bleich S (Dec 2004). "Homocysteine associated genomic DNA hypermethylation in 病人 with chronic alcoholism". Journal of Neural Transmission. 111 (12): 1611–6. doi:10.1007/s00702-004-0232-x. PMID 15565495.
He F, Lidow IA, Lidow MS (2006). "Consequences of paternal cocaine exposure in mice". Neurotoxicology and Teratology. 28 (2): 198–209. doi:10.1016/j.ntt.2005.12.003. PMID 16458479.
Raney TJ, Thornton LM, Berrettini W, Brandt H, Crawford S, Fichter MM, Halmi KA, Johnson C, Kaplan AS, LaVia M, Mitchell J, Rotondo A, Strober M, Woodside DB, Kaye WH, Bulik CM (May 2008). "Influence of overanxious disorder of childhood on the expression of anorexia nervosa". The International Journal of Eating Disorders. 41 (4): 326–32. doi:10.1002/eat.20508. PMID 18213688.
Mostafavi-Abdolmaleky H, Glatt SJ, Tsuang MT (2011). "Epigenetics in Psychiatry". In Bronner F, Helmtrud I (eds.). Epigenetic Aspects of Chronic Diseases. Berlin: Springer. pp. 163–174. ISBN 978-1-84882-643-4.
Abdolmaleky HM, Thiagalingam S, Wilcox M (2005). "Genetics and epigenetics in major psychiatric disorders: dilemmas, achievements, applications, and future scope". American Journal of Pharmacogenomics. 5 (3): 149–60. doi:10.2165/00129785-200505030-00002. PMID 15952869.
Malaspina D, Harlap S, Fennig S, Heiman D, Nahon D, Feldman D, Susser ES (Apr 2001). "Advancing paternal age and the risk of schizophrenia". Archives of General Psychiatry. 58 (4): 361–7. doi:10.1001/archpsyc.58.4.361. PMID 11296097.
Rutten BP, Mill J (Nov 2009). "Epigenetic mediation of environmental influences in major psychotic disorders". Schizophrenia Bulletin. 35 (6): 1045–56. doi:10.1093/schbul/sbp104. PMC 2762629. PMID 19783603.
Yauk C, Polyzos A, Rowan-Carroll A, Somers CM, Godschalk RW, Van Schooten FJ, Berndt ML, Pogribny IP, Koturbash I, Williams A, Douglas GR, Kovalchuk O (Jan 2008). "Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location". Proceedings of the National Academy of Sciences of the United States of America. 105 (2): 605–10. Bibcode:2008PNAS..105..605Y. doi:10.1073/pnas.0705896105. PMC 2206583. PMID 18195365.
McGowan PO, Kato T (Jan 2008). "Epigenetics in mood disorders". Environmental Health and Preventive Medicine. 13 (1): 16–24. doi:10.1007/s12199-007-0002-0. PMC 2698240. PMID 19568875.
Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, Smith CL, Shafa R, Aeali B, Carnevale J, Pan H, Papageorgis P, Ponte JF, Sivaraman V, Tsuang MT, Thiagalingam S (Nov 2006). "Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder". Human Molecular Genetics. 15 (21): 3132–45. doi:10.1093/hmg/ddl253. PMC 2799943. PMID 16984965.
Dempster EL, Mill J, Craig IW, Collier DA (2006). "The quantification of COMT mRNA in post mortem 小脑 tissue: diagnosis, genotype, methylation and expression". BMC Medical Genetics. 7: 10. doi:10.1186/1471-2350-7-10. PMC 1456954. PMID 16483362.
Massart R, Mongeau R, Lanfumey L (Sep 2012). "Beyond the monoaminergic hypothesis: neuroplasticity and epigenetic changes in a transgenic mouse model of depression". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 367 (1601): 2485–94. doi:10.1098/rstb.2012.0212. PMC 3405682. PMID 22826347.
Pariante CM, Lightman SL (Sep 2008). "The HPA axis in major depression: classical theories and new developments". Trends in Neurosciences. 31 (9): 464–8. doi:10.1016/j.tins.2008.06.006. PMID 18675469.
Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (Apr 2006). "Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action". Nature Neuroscience. 9 (4): 519–25. doi:10.1038/nn1659. PMID 16501568.
Gray JD, Milner TA, McEwen BS (Jun 2013). "Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors". Neuroscience. 239: 214–27. doi:10.1016/j.neuroscience.2012.08.034. PMC 3743657. PMID 22922121.
Hunter RG (2012). "Epigenetic effects of stress and corticosteroids in the brain". Frontiers in Cellular Neuroscience. 6: 18. doi:10.3389/fncel.2012.00018. PMC 3329877. PMID 22529779.
Jiang Y, Langley B, Lubin FD, Renthal W, Wood MA, Yasui DH, Kumar A, Nestler EJ, Akbarian S, Beckel-Mitchener AC (Nov 2008). "Epigenetics in the nervous system". The Journal of Neuroscience. 28 (46): 11753–9. doi:10.1523/JNEUROSCI.3797-08.2008. PMC 3844836. PMID 19005036.
Philibert RA, Beach SR, Gunter TD, Brody GH, Madan A, Gerrard M (Mar 2010). "The effect of smoking on MAOA promoter methylation in DNA prepared from lymphoblasts and whole blood". American Journal of Medical Genetics Part B. 153B (2): 619–28. doi:10.1002/ajmg.b.31031. PMC 3694401. PMID 19777560.
Philibert RA, Sandhu H, Hollenbeck N, Gunter T, Adams W, Madan A (Jul 2008). "The relationship of 5HTT (SLC6A4) methylation and genotype on mRNA expression and liability to major depression and alcohol dependence in subjects from the Iowa Adoption Studies". American Journal of Medical Genetics Part B. 147B (5): 543–9. doi:10.1002/ajmg.b.30657. PMC 3643119. PMID 17987668.
Philibert RA, Gunter TD, Beach SR, Brody GH, Madan A (Jul 2008). "MAOA methylation is associated with nicotine and alcohol dependence in women". American Journal of Medical Genetics Part B. 147B (5): 565–70. doi:10.1002/ajmg.b.30778. PMC 3685146. PMID 18454435.
Bodnar RJ (Dec 2010). "Endogenous opiates and behavior: 2009". Peptides. 31 (12): 2325–59. doi:10.1016/j.peptides.2010.09.016. PMID 20875476.
Mill J, Petronis A (Oct 2008). "Pre- and peri-natal environmental risks for attention-deficit hyperactivity disorder (ADHD): the potential role of epigenetic processes in mediating susceptibility". Journal of Child Psychology and Psychiatry, and Allied Disciplines. 49 (10): 1020–30. doi:10.1111/j.1469-7610.2008.01909.x. PMID 18492038.
Gunter TD, Vaughn MG, Philibert RA (2010). "Behavioral genetics in antisocial spectrum disorders and psychopathy: a review of the recent literature". Behavioral Sciences & the Law. 28 (2): 148–73. doi:10.1002/bsl.923. PMID 20422643.
McGowan PO, Sasaki A, D'Alessio AC, Dymov S, Labonté B, Szyf M, Turecki G, Meaney MJ (Mar 2009). "Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse". Nature Neuroscience. 12 (3): 342–8. doi:10.1038/nn.2270. PMC 2944040. PMID 19234457.
Herb BR, Wolschin F, Hansen KD, Aryee MJ, Langmead B, Irizarry R, Amdam GV, Feinberg AP (Oct 2012). "Reversible switching between epigenetic states in honeybee behavioral subcastes". Nature Neuroscience. 15 (10): 1371–3. doi:10.1038/nn.3218. PMC 3518384. PMID 22983211.
Kucharski R, Maleszka J, Foret S, Maleszka R (Mar 2008). "Nutritional control of reproductive status in honeybees via DNA methylation". Science. 319 (5871): 1827–30. Bibcode:2008Sci...319.1827K. doi:10.1126/science.1153069. PMID 18339900.
Li-Byarlay H, Li Y, Stroud H, Feng S, Newman TC, Kaneda M, Hou KK, Worley KC, Elsik CG, Wickline SA, Jacobsen SE, Ma J, Robinson GE (Jul 2013). "RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee". Proceedings of the National Academy of Sciences of the United States of America. 110 (31): 12750–5. Bibcode:2013PNAS..11012750L. doi:10.1073/pnas.1310735110. PMC 3732956. PMID 23852726.
Albert PR (Nov 2010). "Epigenetics in mental illness: hope or hype?". Journal of Psychiatry & Neuroscience. 35 (6): 366–8. doi:10.1503/jpn.100148. PMC 2964366. PMID 20964959.
McCaffery JM (2010). "Genetic epidemiology of stress and gene by stress interaction". In Baum A, Contrada RJ (eds.). The Handbook of Stress Science: Biology, Psychology, and Health. New York: Springer Publishing Company. pp. 78–85. ISBN 978-0-8261-1471-6.
Kalant H (May 2010). "What neurobiology cannot tell us about addiction". Addiction. 105 (5): 780–9. doi:10.1111/j.1360-0443.2009.02739.x. PMID 19919596.
Guo G (2010). "Family influences on children's well being: potential roles of molecular genetics and epigenetics". In Landale N, Booth A, McHale S (eds.). Biosocial Foundations of Family Processes (National Symposium on Family Issues). Berlin: Springer. pp. 181–204. ISBN 978-1-4419-7360-3.
Dempster EL, Pidsley R, Schalkwyk LC, Owens S, Georgiades A, Kane F, Kalidindi S, Picchioni M, Kravariti E, Toulopoulou T, Murray RM, Mill J (Dec 2011). "Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder". Human Molecular Genetics. 20 (24): 4786–96. doi:10.1093/hmg/ddr416. PMC 3221539. PMID 21908516. |