训练用单针/双针带线【出售】-->外科训练模块总目录
0.5、1、2、3.5、5mm仿生血管仿生体 - 胸腹一体式腹腔镜模拟训练器
仿气腹/半球形腹腔镜模拟训练器
[单端多孔折叠]腹腔镜模拟训练器
「训练教具器械汇总」管理员微信/QQ12087382[问题反馈]
开启左侧

[病历讨论] 应力集中

[复制链接]
发表于 2020-1-24 00:01:36 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

×
应力集中(通常称为应力上升或应力上升)是物体中应力集中的位置。 当力均匀地分布在其区域上时,物体会更坚固,因此,例如由于裂缝或局部应力增加而造成的缺口结果会导致面积减小。 当集中应力超过材料的理论内聚强度时,材料可能会通过传播的裂纹而失效。 材料的实际断裂强度始终低于理论值,因为大多数材料都包含细小的裂纹或污染物(尤其是异物),这些应力或污染物会集中应力。 疲劳裂纹总是始于应力源,因此消除此类缺陷会增加疲劳强度。

Internal force lines are denser near the hole.gif
内力线在孔附近更密

内容
1 原因
2 预防
3 例子
4 裂纹的集中系数
5 浓度系数计算
6 参考

原因

The sharp corner at the brick has acted as a stress concentrator within the conc.jpg
砖的尖角起到了混凝土内部应力集中的作用,导致其破裂
1)几何上的不连续性会导致物体的应力场强度局部增加。引起这些集中的形状的示例包括裂纹,尖角,孔和物体横截面的变化。较高的局部应力会导致对象更快失效,因此工程师必须设计几何形状以最大程度地减少应力集中。

2)由于所施加载荷的不连续性。

3)在制造过程中可能会出现材料间断。

预防
减少裂纹尖端应力集中的一种反直觉方法(称为裂纹尖端钝化)是在裂纹末端钻一个大孔。钻孔相对较大,可增加有效的裂纹尖端骨,从而降低应力集中[1]。但是,这是一个临时解决方案,必须在第一个适当时机纠正。

重要的是系统地检查由裂纹引起的可能的应力集中-裂纹的临界长度为2a,如果超过此值,裂纹就会发生确定的灾难性破坏。最终的失败是确定的,因为一旦长度大于2a,裂纹就会自行传播。 (不需要额外的能量来增加裂纹长度,因此裂纹会继续扩大直到材料破裂为止。)可以通过格里菲斯的脆性断裂理论来理解2a的起源。

降低应力集中的另一种方法是在尖锐的边缘添加圆角。这也减少了应力集中,从而使应力流线更顺畅。在带螺纹的组件中,力流线在从柄部分到带螺纹部分的过程中会弯曲。结果,应力集中发生。为了减少这种情况,在刀柄和螺纹部分之间要做一个小的底切。

例子

This orthosis is implanted to support the femur after a fracture, but the concen.jpg
这种矫形器被植入以支撑骨折后的股骨,但是其弯曲处的应力集中增加了其在受力作用下破裂的可能性。
矫形外科医师使用术语“压力提升器”。植入矫形器上的应力集中点很可能是其失败点。

由于应力集中而导致金属失效的典型案例包括:De Havilland彗星平面窗角处的金属疲劳,以及大西洋冬季暴风雪中寒冷和有压力的情况下,Liberty船舱口角处的脆性断裂。

浓度系数计算
有用于测量应力集中系数的实验方法,包括光弹性应力分析,脆性涂层或应变仪。尽管所有这些方法都取得了成功,但它们都还存在实验,环境,准确性和/或测量方面的缺点。

在设计阶段,有多种估算应力集中系数的方法。已经发布了几种应力集中因子的目录。也许最著名的是彼得森于1953年首次出版的《应力集中设计因素》。[3]如今,有限元方法已广泛用于设计中。使用材料的弹性或强度考虑的理论方法可以得出与以上所示方程相似的方程。

目录,FEM和所计算的理论值之间可能会有细微的差异。每种方法都有优点和缺点。许多目录曲线均来自实验数据。 FEM直接计算峰值应力,通过将周围材料中的应力积分可以很容易地找到标称应力。结果是在选择哪些数据进行设计决策时可能必须使用工程判断。对于无限或半无限的几何形状,已经得出了许多理论应力集中因子,这些应力集中因子可能无法分析,也无法在应力实验室中进行测试,但是使用两种或多种方法解决问题将使工程师能够得出准确的结论。

另见
Fillet
参考
stress at round-tip notches an improved solution
Schijve, Jaap (2001). Fatigue of 结构s and Materials. Springer. p. 90. ISBN 978-0792370147.
Peterson, Rudolf Earl (1953). Stress Concentration Design Factors. John Wiley & Sons. ISBN 978-0471683766.
ESDU64001: Guide to stress concentration data (ISBN 1-86246-279-8)
Pilkey, Walter D, Peterson's Stress Concentration Factors, Wiley, 2nd Ed (1999). ISBN 0-471-53849-3
您需要登录后才可以回帖 登录 | 注册

本版积分规则

丁香叶与你快乐分享

微信公众号

管理员微信

服务时间:8:30-21:30

站长微信/QQ

← 微信/微信群

← QQ

Copyright © 2013-2025 丁香叶 Powered by dxye.com  手机版 
快速回复 返回列表 返回顶部