马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
×
概要
最初描述于20世纪70年代,血管化骨移植已成为治疗骨缺损和非愈合的关键组成部分。虽然在下肢已经确立,但近年来已经看到许多新技术被描述为治疗各种具有挑战性的上肢病变。在这里,作者回顾了血管化骨移植的不同技术在上肢骨病变中的应用。血管化腓骨仍然是治疗肱骨和前臂大骨缺损的金标准,同时也在腕骨重建中发挥作用;然而,更大缺陷的另外两个重要选择包括血管化肩胛骨移植和Capanna技术。较小的上肢骨缺损和非结合可​​以用内侧股骨髁(MFC)游离皮瓣或血管化肋骨转移治疗。在腕骨非关节中,带蒂的远端桡骨皮瓣和游离MFC皮瓣都是可行的选择。最后,在骨骼不成熟的患者中,血管化的腓骨头骨骺转移除骨骼重建外还可提供生长潜力。
关键词:血管化骨移植,血管化腓骨,股骨内侧髁瓣,骨移植,血管化骨骺转移
在历史上,血管化骨移植保留用于节段性骨丢失> 5至6 cm与血管化不良的局部软组织环境相关.1 2 3 4 5 6 7 8 在下肢,这通常见于开放性骨折,肿瘤切除术后,在治疗骨髓炎或非联合治疗期间.1 2 3 4 5 6 7 8上肢遇到同样的情况;然而,还需要治疗更小的缺陷,例如缺血性坏死或腕骨或掌骨的顽固不愈合的病例。近年来,已经开发了许多血管化策略来治疗对非血管化的自体移植物或同种异体移植物顽固的小骨缺损。较新的选择,如游离股骨内侧髁移植物和带蒂桡骨远端移植物可用于治疗腕骨缺血性坏死和腕骨非关节,而血管化骨骺转移可用于恢复儿科患者的前臂生长.9 10 11 12 13 14 15
对于骨缺损<6 cm,非血管化移植物已被证明是成功的,只要移植物被血管良好的组织覆盖并且伤口没有感染.16 非血管化的骨移植物通过蠕动替代过程并入缺陷中。血管向内生长。相比之下,血管化骨移植允许维持骨骼微环境,允许原发性骨骼愈合进入受体部位,而不是取决于受体骨骼的重塑过程(可能因辐射,感染或缺血性坏死而受损) .3 17 18血管化骨移植物已被证明可以提供更快速的愈合,降低后续骨折的风险,并且具有在生理负荷下重塑的能力,允许早期负重.8 19作者的目的是回顾血管化的使用用于上肢重建的骨移植物。
血管化腓骨
游离血管化腓骨已成为长骨重建的黄金标准,因为其于1975年建立。许多报道证明这些移植物成功,第一次移植时的结合率高达80%,补充移植后高达97%。 8 20 21 22在成人中,它可以提供长达25厘米的直的皮质骨以及可靠的血管蒂,供体部位发病率低.20 23在上肢,骨骼的管状形状和容易接近的血管呈现它是最有希望的游离腓骨转移位置之一.24
腓骨的大小和形状与桡骨和尺骨的骨干非常相似,使其成为重建前臂骨质流失的理想供体.25 这些相似之处常常使血管化腓骨重建能够产生稳定的前臂和手腕。此外,移植物的快速成熟使早期负荷和恢复活动.25 大多数报告显示,前臂游离腓骨重建取得了优异的效果,85%至89%的患者获得了移植物的结合.8 22 26 27 Han及其同事的系列文章中有15%的不结合率;然而,在所有前臂重建患者中,没有一个移植物出现症状性不愈合,导致肢体挽救.8 前臂游离腓骨转移后最常见的骨性并发症是应力性骨折,多达17%的患者可见.8 22 28
肱骨干骨骨缺损也经常用血管化的游离腓骨移植物治疗,从而能够恢复功能性肩部和肘部。然而,成功率不如前臂可预测,晚期骨折率高达40%.8 21 24 28 29 30 31 32高骨折率被认为是由于骨性愈合失败,尺寸组合所致不匹配,骨缝合和局部软组织环境.29 31 33 Rashid及其同事指出,移植骨折率仅为8%,愈合率为95%,这归因于使用刚性压缩钢板和增强使用额外的用于软组织覆盖的皮瓣。有趣的是,在移植骨折的情况下,注意到没有患者有任何额外的软组织覆盖.29这突出了血管良好的局部软组织环境在治疗大骨缺损中的作用(图。1)。
图1
一名26岁的士兵参与了地雷事故,导致节段性肱骨损失。 (A)手臂的前后位(AP)X线片显示肱骨节段性骨丢失。 (B)将具有皮肤桨的血管化腓骨用作插入移植物以重建肱骨。 (C)最终AP射线照片显示腓骨移植物的固体结合。
Glenohumeral关节固定术可以通过使用游离腓骨来补充,特别是在肱骨近端骨质流失的情况下进行抢救手术.34 35 36 37这个手术的目标是提供稳定的肩膀并允许肘部,腕部和尽管血管化腓骨可以帮助患者恢复一些上肢功能,但仍有较高的再手术率,最高可达43%。34 35 36 37
对于掌骨缺损,尽管局部皮瓣通常是第一选择,但是可以通过游离腓骨皮瓣成功治疗与显著软组织或骨质流失相关的损伤.31 38 39 40在这种情况下,游离腓骨可以分成多个部分来桥接31 38 39 40 通常,当缺损涉及关节表面时,关节融合到腓骨上.31 38 39 40 或者,腓骨和近端指骨关节面可以模拟假关节,保持手的有限运动使用硅胶关节成形术和游离腓骨皮瓣,也可以保持腕关节
虽然血管化的腓骨移植物提供了恢复上肢骨性解剖结构的可靠选择,但功能恢复仍然非常困难。这是由于前臂,手和手腕的复杂关节.42游离腓骨重建后的功能评级差异很大,一些患者报告总体功能良好,而另一些患者功能很差.21 22 30 31 35一项研究表明具有更多远端重建的患者由于“正常”近端组织的数量而具有更好的结果。然而,对于将导致功能恢复改善的特定适应症仍然缺乏共识。
Capanna技术
尽管游离血管化腓骨移植物在上肢重建中具有许多优点,但血管蒂通常可以防止使用双板或髓内固定,并且它们缺乏大皮质同种异体移植物的结构支撑.5 大型皮质同种异体移植物在干骺端肿瘤切除术后一直被使用。和干骺端重建是必要的。大型结构同种异体移植物允许强固定,但由于其无血管性质而易于感染和骨折。 Capanna在1980年描述了大型结构同种异体移植物与髓内血管化腓骨的组合。当这两种移植物类型相结合时,游离腓骨的成骨特性可以通过大块同种异体移植物的结构支撑来补充,提供持久的生物重建选择.43尽管这种技术通常用于重建下肢缺损,但它已成功应用于肱骨.44在Li及其同事的一项研究中,作者在肱骨干骨折肿瘤切除后使用Capanna技术显示出优异的结果。 45 所有患者都注意到了联合,所有患者都能够使用上肢恢复体力活动而没有负重限制.45
血管化肩胛骨
最初描述于1982年的肩胛皮瓣基于肩胛下动脉.46 47 48这种皮瓣已被用于重建创伤和肿瘤摘除术后四肢缺损.46 47 48 49 50通过结合可以实现双侧皮瓣这种皮瓣的优点是体积大,能够通过覆盖的肌肉和皮肤采集,线性形状,在生理应激下肥大的能力,以及可靠的血管蒂.46 47 48 49 50 52 53 54通常,肩胛皮瓣可成功用于重建上肢缺损,而供体部位发病率最低.50 54 55
近年来,由于军事场所爆炸伤的增加,这种皮瓣的使用有所增加.50 大多数爆炸伤发生在被拆卸的士兵身上,创伤性肢体截肢率增加,导致 缺乏腿作为上肢皮瓣重建的供体部位.50 Sabino及其同事表明,在严重多发性创伤的情况下,肩胛骨皮瓣成功用于重建10例上肢损伤(9只前臂/肘部和1只手))。 该系列的保肢率为100%.50 在另一项关于肩胛皮瓣用于上肢重建的大型研究中,Datiashvili及其同事在11例上肢缺损中的9例中成功使用了这种皮瓣(图2).54
图2
(A)一名19岁男性,患有开放性粉碎性肘部骨折,伴有尺骨近端脱落,伴有爆炸后伴有软组织损失。 (B)前后位(AP)X线片显示尺骨近端丢失。双腿也在损伤中丢失,使血管化骨的供体部位受限。 (C,D)基于肩胛骨系统的复合瓣被设计成包括肩胛骨和肩胛皮肤桨以及肩胛骨骨。 (E)插入前的皮瓣图像。 (F)插入时的图像。 (G)侧位X线片显示放射照相联合。
带血管的肋骨
自由肋骨皮瓣最初于1977年被描述用于重建下肢损伤.56肋骨由具有双重血液供应的膜骨组成,来自后肋间动脉和来自锯齿前肌的丰富的骨膜血供.57 58 59骨膜血供来自胸背动脉,提供长期可靠的蒂用于血管化骨移植。通常,这种移植物用于重建下肢或颌面部缺损;然而,有一些关于它在肱骨和锁骨中使用的报道.60 61 62 63
在用于重建锁骨或肱骨缺损的用途中,肋骨既可以作为带蒂移植物运输,也可以作为自由瓣移植.60 61 62 63 这种瓣的一个优点是结合了大的锯齿肌软组织包膜有无使用自由肋移植物治疗肱骨缺损与联合率高达100%有关.61 63对于锁骨非关节的治疗,Werner及其同事表明双肋移位在解剖学上是可行的,生物力学上优于单个肋骨转移治疗锁骨不愈合(图3).62
图3
已发现单血管和双血管肋骨转移对于锁骨,肱骨和前臂重建是成功的。在伴随软组织损失的情况下,添加锯齿肌提供优异的软组织覆盖。 (A)提升技术包括解剖背阔肌的外侧边缘以暴露锯齿。 (B)胸背动脉的锯齿状分支在锯齿的浅表面上(箭头)小心地隔离。 (C)然后解剖两到三个锯齿肌和两个下面的肋骨。 (D)采集期间包括肋间肌以保护骨膜血供。在胸部闭合之前,胸壁缺损覆盖有真皮同种异体移植物或网状物。
来自远端桡骨的血管化骨
最初描述于1978年,径向前臂皮瓣现在被认为是用于软组织重建的“主力”皮瓣.64 虽然它通常用作软组织皮瓣,但是桡前臂皮瓣也可以结合远端桡骨的外侧三分之一来创建皮瓣前臂皮瓣.64 65 这种皮瓣通常用于头颈部重建;然而,在上肢重建的情况下,这个皮瓣可以是基于桡动脉的游离皮瓣或带蒂皮瓣.64 65 Niazi及其同事指出,当使用这种皮瓣进行上肢重建时,移植物存活率为100%.64
在同侧肢体损伤的情况下使用桡骨前臂皮瓣的缺点是多方面的。首先,皮瓣利用桡动脉并且可能潜在地损害到手的血流。另外,桡骨动脉与桡骨动脉的使用与医源性骨折的高发生率相关,因此限制了该瓣的使用。如Sheetz及其同事所述,桡骨的更适用的用途是将移植物置于背部或掌侧腕管的拱廊上;这些小尺寸的移植物可用于辅助腕骨融合或用于管理腕骨内的非联合。
Zaidemberg于1991年首次描述了远端桡骨背侧的带蒂血管化骨移植.66 该皮瓣基于桡动脉的上行冲洗分支,特别是1,2间室上动脉(ICSRA).12 66在一些研究中当用于舟状骨AVN或非联合治疗时,这种带蒂骨移植物的联合率高达90%至100%.66 67 68 69另外,Boyer及其同事的一项研究报告,联合率仅为60%。值得注意的是,本研究中失败的所有患者均未通过先前的骨移植手术。斯特劳和同事们也报告了令人沮丧的结果,只有27%的近端舟状舟状非关节用带蒂的桡骨远端皮瓣进行治疗。对这些发现的可能解释可能涉及骨折固定不良和在确认愈合之前切除固定部件.71另外的研究表明,女性和吸烟者的失败率较高,以及这些移植物的舟状骨存在驼背畸形.72 73当实现联合时,可以预期使用1,2 ICSRA皮瓣导致临床结果改善,手臂,肩部和手部(DASH)评分的残疾程度降低,SF-36评分也得到改善.73
血管内侧股骨髁
内侧股骨髁(MFC)血管化移植物基于关节下行膝或膝上腹膜动脉,产生骨膜骨膜或皮质骨膜瓣(图4).74 75随着骨外血供,MFC也具有健壮性骨内血液供应,平均30个骨内穿支.76这些穿支通常集中在MFC的下远端象限,使其成为移植物抬高的首选位置.77由于内侧股骨髁的血管供应一致且稳健,这个皮瓣可以作为复合皮瓣提升,包括覆盖皮肤和肌肉.78 79 80
图4
一名35岁男子的食指受到枪伤,导致大部分近端指骨丧失,但保持手指活力和感觉。 (A)手指的射线照片显示放置在近节指骨内以保持长度的抗生素浸渍水泥间隔物。 (B)基于下行膝状动脉(黑色箭头)采集皮瓣以包括骨(白色箭头)和皮肤。如在该(C)前后(AP)射线照片(D-F)中所见,在9周内获得骨愈合,并且最终功能是可接受的。
在上肢,MFC移植物最常被描述为重建舟状非关节.77 最初,MFC用于治疗舟状骨的非关节,伴有AVN作为远端桡骨瓣的替代物.81 继发于桡骨远端皮瓣。移植物的柔韧性和丰富的血管分布,能够实现高的愈合率,导致大多数患者手腕运动的良好恢复和疼痛缓解.81当比较带蒂的远端桡骨皮瓣(1,2 ISCRA)时在MFC中,发现MFC是优越的,特别是在腕骨塌陷和舟状骨AVN的情况下.82在Jones和同事的评论中,比较MFC与1,2 ISCRA皮瓣在腕骨塌陷和舟状骨AVN的情况下在100%的MFC皮瓣中实现了愈合,而在1,2个ISCRA皮瓣中只有40%达到了.82 同样,已经证明,在伴有腕关节塌陷,驼背畸形或AVN的舟状骨不连的情况下,MFC不仅实现了healin g不愈合部位,但也有助于改善腕骨的对齐和结构。10
上肢MFC的其他用途包括肱骨,锁骨,掌骨和前臂.75 77 83 84 85 86 在这些情况下,柔韧的皮瓣通常缠绕在管状骨上以“修补”非愈合部位,随后的联合率高达100%.75 77 83 84 85 86 这种移植物在开放复位失败,内固定(ORIF)或与先前放射治疗相关的骨折的情况下,在锁骨中值得特别考虑.9 84在这些情况下, MFC缠绕在非愈合部位周围并用重缝线固定.84 因为MFC提供的结构稳定性很小,所以用刚性内固定补充它是至关重要的.84 这种技术也成功用于治疗非通过切除骨不连并用MFC移植物增强刚性内固定来治疗桡骨和尺骨.85 87对于肱骨萎缩性非愈合,MFC皮瓣通常在修复固定时使用联盟的范围从90%到100%.9 55 83 88
除了作为皮质囊肿皮瓣外,MFC还可以是一种骨软骨皮瓣,通过包括内侧股骨滑车用于治疗舟状骨近端AVN.89 90 91内侧滑车的大小与曲率弧相关在Bürger等人的系列研究中,该皮瓣用于16例患者,其中15例患者的骨不愈愈合[89]。本研究中的患者疼痛减轻,并伴有舟状骨的解剖学重建。大多数人报告没有疼痛,并且他们的手腕动作也有所改善.89 同样,通过保留舟月韧带远端部分进行这种转移的患者保留了舟月关系.89
此程序后的供体部位并发症很少。在Jones等人的一份报告中,所有患者都注意到手术后的膝关节疼痛;然而,在随访6周时,疼痛已完全消退,未发现长期并发症.82 没有关于深部感染,膝关节运动并发症或骨折报告的报道.77在患者膝关节的放射学评估中经过MFC移植后,发现与对侧相比,骨关节炎没有增加.92 生物力学研究还表明,即使在大型移植物采集的情况下,移动的压力也不足以导致骨折。 0.93
足部作为血管化骨的供体部位
跖骨的血管化部分已用于重建远端桡骨和尺骨的部分。对于桡骨远端的畸形愈合,Del Pinal及其同事已经证明第三跖骨的基部可用于重建关节面.95 作者显示手腕运动,握力,以及疼痛和DASH评分的改善都有显著改善.95射线照片还显示关节面保留没有任何骨关节炎迹象.95 同样,捐献部位并发症最少,均值随访报告美国骨科足踝评分为96/100
同样,已有报道使用跖骨头重建远端放射性尺骨关节(DRUJ)的病例报告.94 在该患者中,乙状结肠切迹和三角纤维软骨复合体(TFCC)的软组织附着完好无损;然而,尺骨头在骨折导致疼痛和功能下降后出现缺血性坏死.94跖骨头被转移并用于成功重建尺骨头,为患者提供了握力和对称腕骨运动的改善。
血管化骨骺转移
具有大骨缺损的骨骼不成熟患者代表了一个具有挑战性的问题,其次是需要匹配其健康骨骼在上肢的生长。一种解决方案涉及近端腓骨骨骺的转移,从而实现骨重建和生长潜力。使用近端腓骨物理首先用于重建远端半径。腓骨的物理由胫前动脉提供。保持近端骨密度血液供应以保持移植物生长潜力至关重要。在进入胫骨前房之前,骨骺动脉蒂从胫骨动脉起始,并伴有肌腱骨膜分支到骨干。
Innocenti及其同事表明近端腓骨的使用可以成功地用于重建儿童的桡骨远端.98 移植的植物显示出可靠的愈合,并且以与对侧和同侧尺骨相似的速度持续生长.98同样,X线片也是如此。移植的物理表现出关节面的重塑,提供稳定,功能性的手腕,与对侧相比,手腕运动的70%.98 其他作者使用近端腓骨物理转移到桡骨远端也证明了类似的成功结果(图5).99 100
图5
(A)一名9岁女孩,患有远端尺骨发育不全和不愈合。近端腓骨肌腱转移用于重建涉及的尺骨。 (B)穿过分支到来自胫前动脉(箭头)的物理的图像。 (C)插入前移植物的图像。 (D)供体部位的图像显示仔细保留的深腓神经分支,在解剖期间必须保留以避免术后足下垂。 (E)前臂的前后位(AP)X线片显示近端骨性愈合并重建前臂长度。
近端腓骨也被用于重建儿童肱骨近端.100然而,这些结果并不像在桡骨远端看到的那样有希望。在Innocenti及其同事最大的系列研究中,尽管移植骨折率很高,但所有患者都实现了无痛,功能性肢体.101 本研究的作者认为,较差的结果与腓骨和肱骨之间的大小差异有关,而也取决于在肿瘤切除术中切除的肩袖数量
结论
尽管腓骨移植物仍然是大多数上肢重建的金标准,但是新的选择如肩胛骨皮瓣和扩展的股骨内侧髁皮瓣具有重建涉及骨和软组织的复合缺陷的显著潜力。现在可以通过膝盖和足部的血管化移植物进行关节重建的可能性。这些关节重建的长期结果仍然未知;将需要进一步的研究来确定长期成功和潜在的供体部位并发症。
参考:
New Options for Vascularized Bone Reconstruction in the Upper Extremity
1. Wood M B, Cooney W P III, Irons G B Jr. Skeletal reconstruction by vascularized bone transfer: indications and results. Mayo Clin Proc. 1985;60(11):729–734. [PubMed] [Google Scholar]
2. Wood M B. Free vascularized bone transfers for nonunions, segmental gaps, and following tumor resection. Orthopedics. 1986;9(6):810–816. [PubMed] [Google Scholar]
3. de Boer H H, Wood M B. Bone changes in the vascularised fibular graft. J Bone Joint Surg Br. 1989;71(3):374–378. [PubMed] [Google Scholar]
4. Dell P C, Sheppard J E. Vascularized bone grafts in the treatment of infected forearm nonunions. J Hand Surg Am. 1984;9(5):653–658. [PubMed] [Google Scholar]
5. Taylor G I, Miller G D, Ham F J. The free vascularized bone graft. A clinical extension of microvascular techniques. Plast Reconstr Surg. 1975;55(5):533–544. [PubMed] [Google Scholar]
6. Malizos K N, Zalavras C G, Soucacos P N, Beris A E, Urbaniak J R. Free vascularized fibular grafts for reconstruction of skeletal defects. J Am Acad Orthop Surg. 2004;12(5):360–369. [PubMed] [Google Scholar]
7. Wood M B. Femoral reconstruction by vascularized bone transfer. Microsurgery. 1990;11(1):74–79. [PubMed] [Google Scholar]
8. Han C S, Wood M B, Bishop A T, Cooney W P III. Vascularized bone transfer. J Bone Joint Surg Am. 1992;74(10):1441–1449. [PubMed] [Google Scholar]
9. Choudry U H, Bakri K, Moran S L, Karacor Z, Shin A Y. The vascularized medial femoral condyle periosteal bone flap for the treatment of recalcitrant bony nonunions. Ann Plast Surg. 2008;60(2):174–180. [PubMed] [Google Scholar]
10. Jones D B Jr, Moran S L, Bishop A T, Shin A Y. Free-vascularized medial femoral condyle bone transfer in the treatment of scaphoid nonunions. Plast Reconstr Surg. 2010;125(4):1176–1184. [PubMed] [Google Scholar]
11. Rizzo M, Moran S L. Vascularized bone grafts and their applications in the treatment of carpal pathology. Semin Plast Surg. 2008;22(3):213–227. [PMC free article] [PubMed] [Google Scholar]
12. Sheetz K K, Bishop A T, Berger R A. The arterial blood supply of the distal radius and ulna and its potential use in vascularized pedicled bone grafts. J Hand Surg Am. 1995;20(6):902–914. [PubMed] [Google Scholar]
13. Shin A Y, Bishop A T, Berger R A. Vascularized pedicled bone grafts for disorders of the carpus. Tech Hand Up Extrem Surg. 1998;2(2):94–109. [PubMed] [Google Scholar]
14. Innocenti M, Delcroix L, Balatri A. Vascularized growth plate transfer for distal radius reconstruction. Semin Plast Surg. 2008;22(3):186–194. [PMC free article] [PubMed] [Google Scholar]
15. Innocenti M Delcroix L Manfrini M Ceruso M Capanna R Vascularized proximal fibular epiphyseal transfer for distal radial reconstruction J Bone Joint Surg Am 200587(Pt 2, Suppl 1):237–246. [PubMed] [Google Scholar]
16. Bieber E J, Wood M B. Bone reconstruction. Clin Plast Surg. 1986;13(4):645–655. [PubMed] [Google Scholar]
17. Arata M A, Wood M B, Cooney W P III. Revascularized segmental diaphyseal bone transfers in the canine. An analysis of viability. J Reconstr Microsurg. 1984;1(1):11–19. [PubMed] [Google Scholar]
18. Berggren A, Weiland A J, Dorfman H. The effect of prolonged ischemia time on osteocyte and osteoblast survival in composite bone grafts revascularized by microvascular anastomoses. Plast Reconstr Surg. 1982;69(2):290–298. [PubMed] [Google Scholar]
19. Fujimaki A, Suda H. Experimental study and clinical observations on hypertrophy of vascularized bone grafts. Microsurgery. 1994;15(10):726–732. [PubMed] [Google Scholar]
20. Lin C H, Wei F C, Chen H C, Chuang D C. Outcome comparison in traumatic lower-extremity reconstruction by using various composite vascularized bone transplantation. Plast Reconstr Surg. 1999;104(4):984–992. [PubMed] [Google Scholar]
21. Heitmann C, Erdmann D, Levin L S. Treatment of segmental defects of the humerus with an osteoseptocutaneous fibular transplant. J Bone Joint Surg Am. 2002;84-A(12):2216–2223. [PubMed] [Google Scholar]
22. Jupiter J B, Gerhard H J, Guerrero J, Nunley J A, Levin L S. Treatment of segmental defects of the radius with use of the vascularized osteoseptocutaneous fibular autogenous graft. J Bone Joint Surg Am. 1997;79(4):542–550. [PubMed] [Google Scholar]
23. Wei F C, Chen H C, Chuang C C, Noordhoff M S. Fibular osteoseptocutaneous flap: anatomic study and clinical application. Plast Reconstr Surg. 1986;78(2):191–200. [PubMed] [Google Scholar]
24. Wood M B, Bishop A T. Massive bone defects of the upper limb: reconstruction by vascularized bone transfer. Hand Clin. 2007;23(1):49–56. [PubMed] [Google Scholar]
25. Stevanovic M, Gutow A P, Sharpe F. The management of bone defects of the forearm after trauma. Hand Clin. 1999;15(2):299–318. [PubMed] [Google Scholar]
26. Soucacos P N, Korompilias A V, Vekris M D, Zoubos A, Beris A E. The free vascularized fibular graft for bridging large skeletal defects of the upper extremity. Microsurgery. 2011;31(3):190–197. [PubMed] [Google Scholar]
27. Kremer T Bickert B Germann G Heitmann C Sauerbier M Outcome assessment after reconstruction of complex defects of the forearm and hand with osteocutaneous free flaps Plast Reconstr Surg 20061182443–454., discussion 455–456 [PubMed] [Google Scholar]
28. Minami A, Kasashima T, Iwasaki N, Kato H, Kaneda K. Vascularised fibular grafts. An experience of 102 patients. J Bone Joint Surg Br. 2000;82(7):1022–1025. [PubMed] [Google Scholar]
29. Rose P S, Shin A Y, Bishop A T, Moran S L, Sim F H. Vascularized free fibula transfer for oncologic reconstruction of the humerus. Clin Orthop Relat Res. 2005;438(438):80–84. [PubMed] [Google Scholar]
30. Gebert C, Hillmann A, Schwappach A. et al.Free vascularized fibular grafting for reconstruction after tumor resection in the upper extremity. J Surg Oncol. 2006;94(2):114–127. [PubMed] [Google Scholar]
31. Rashid M, Hafeez S, Zia ul Islam M. et al.Limb salvage in malignant tumours of the upper limb using vascularised fibula. J Plast Reconstr Aesthet Surg. 2008;61(6):648–661. [PubMed] [Google Scholar]
32. Friedrich J B, Moran S L, Bishop A T, Wood C M, Shin A Y. Free vascularized fibular graft salvage of complications of long-bone allograft after tumor reconstruction. J Bone Joint Surg Am. 2008;90(1):93–100. [PubMed] [Google Scholar]
33. Wood M B. Upper extremity reconstruction by vascularized bone transfers: results and complications. J Hand Surg Am. 1987;12(3):422–427. [PubMed] [Google Scholar]
34. Bilgin S S. Reconstruction of proximal humeral defects with shoulder arthrodesis using free vascularized fibular graft. J Bone Joint Surg Am. 2012;94(13):e94. [PubMed] [Google Scholar]
35. Fuchs B, O'Connor M I, Padgett D J, Kaufman K R, Sim F H. Arthrodesis of the shoulder after tumor resection. Clin Orthop Relat Res. 2005;(436):202–207. [PubMed] [Google Scholar]
36. Scalise J J, Iannotti J P. Glenohumeral arthrodesis after failed prosthetic shoulder arthroplasty. J Bone Joint Surg Am. 2008;90(1):70–77. [PubMed] [Google Scholar]
37. Viehweger E, Gonzalez J F, Launay F. et al.[Shoulder arthrodesis with vascularized fibular graft after tumor resection of the proximal humerus] Rev Chir Orthop Repar Appar Mot. 2005;91(6):523–529. [PubMed] [Google Scholar]
38. Simsek T, Engin M S, Demir A, Tayfur V, Eroglu L. Reconstruction of hand injuries with multiple metacarpal defects using free fibular osteoseptocutaneous flap. Microsurgery. 2012;32(7):520–526. [PubMed] [Google Scholar]
39. Lee H B, Tark K C, Kang S Y, Kim S W, Chung Y K. Reconstruction of composite metacarpal defects using a fibula free flap. Plast Reconstr Surg. 2000;105(4):1448–1452. [PubMed] [Google Scholar]
40. Lin C H, Wei F C, Rodriguez E D, Lin Y T, Chen C T. Functional reconstruction of traumatic composite metacarpal defects with fibular osteoseptocutaneous free flap. Plast Reconstr Surg. 2005;116(2):605–612. [PubMed] [Google Scholar]
41. Jones N F, Dickinson B P, Hansen S L. Reconstruction of an entire metacarpal and metacarpophalangeal joint using a fibular osteocutaneous free flap and silicone arthroplasty. J Hand Surg Am. 2012;37(2):310–315. [PubMed] [Google Scholar]
42. Hollenbeck S T, Komatsu I, Woo S. et al.The current role of the vascularized-fibular osteocutaneous graft in the treatment of segmental defects of the upper extremity. Microsurgery. 2011;31(3):183–189. [PubMed] [Google Scholar]
43. Capanna R Campanacci D A Belot N et al.A new reconstructive technique for intercalary defects of long bones: the association of massive allograft with vascularized fibular autograft. Long-term results and comparison with alternative techniques Orthop Clin North Am 200738151–60., vi vi [PubMed] [Google Scholar]
44. Chang D W, Weber K L. Use of a vascularized fibula bone flap and intercalary allograft for diaphyseal reconstruction after resection of primary extremity bone sarcomas. Plast Reconstr Surg. 2005;116(7):1918–1925. [PubMed] [Google Scholar]
45. Li J, Wang Z, Pei G X, Guo Z. Biological reconstruction using massive bone allograft with intramedullary vascularized fibular flap after intercalary resection of humeral malignancy. J Surg Oncol. 2011;104(3):244–249. [PubMed] [Google Scholar]
46. Gilbert A, Teot L. The free scapular flap. Plast Reconstr Surg. 1982;69(4):601–604. [PubMed] [Google Scholar]
47. Barwick W J, Goodkind D J, Serafin D. The free scapular flap. Plast Reconstr Surg. 1982;69(5):779–787. [PubMed] [Google Scholar]
48. Hamilton S G, Morrison W A. The scapular free flap. Br J Plast Surg. 1982;35(1):2–7. [PubMed] [Google Scholar]
49. Izadi D, Paget J T, Haj-Basheer M, Khan U M. Fasciocutaneous flaps of the subscapular artery axis to reconstruct large extremity defects. J Plast Reconstr Aesthet Surg. 2012;65(10):1357–1362. [PubMed] [Google Scholar]
50. Sabino J, Franklin B, Patel K, Bonawitz S, Valerio I L. Revisiting the scapular flap: applications in extremity coverage for our U.S. combat casualties. Plast Reconstr Surg. 2013;132(4):577e–585e. [PubMed] [Google Scholar]
51. Coleman J J III, Sultan M R. The bipedicled osteocutaneous scapula flap: a new subscapular system free flap. Plast Reconstr Surg. 1991;87(4):682–692. [PubMed] [Google Scholar]
52. Allen R J, Dupin C L, Dreschnack P A, Glass C A, Mahon-Deri B. The latissimus dorsi/scapular bone flap (the “latissimus/bone flap”) Plast Reconstr Surg. 1994;94(7):988–996. [PubMed] [Google Scholar]
53. Guerra A B Metzinger S E Lund K M Cooper M M Allen R J Dupin C L The thoracodorsal artery perforator flap: clinical experience and anatomic study with emphasis on harvest techniques Plast Reconstr Surg 2004114132–41., discussion 42–43 [PubMed] [Google Scholar]
54. Datiashvili R O, Yueh J H. Management of complicated wounds of the extremities with scapular fascial free flaps. J Reconstr Microsurg. 2012;28(8):521–528. [PubMed] [Google Scholar]
55. Muramatsu K, Doi K, Ihara K, Shigetomi M, Kawai S. Recalcitrant posttraumatic nonunion of the humerus: 23 patients reconstructed with vascularized bone graft. Acta Orthop Scand. 2003;74(1):95–97. [PubMed] [Google Scholar]
56. Buncke H J, Furnas D W, Gordon L, Achauer B M. Free osteocutaneous flap from a rib to the tibia. Plast Reconstr Surg. 1977;59(6):799–804. [PubMed] [Google Scholar]
57. Lin C H, Wei F C, Levin L S. et al.Free composite serratus anterior and rib flaps for tibial composite bone and soft-tissue defect. Plast Reconstr Surg. 1997;99(6):1656–1665. [PubMed] [Google Scholar]
58. Bruck J C, Bier J, Kistler D. The serratus anterior osteocutaneous free flap. J Reconstr Microsurg. 1990;6(3):209–213. [PubMed] [Google Scholar]
59. Ueng W N, Chuang C C, Shih C H. Double-rib composite free transfer to reconstruct a single-spared lower extremity defect. J Trauma. 1995;38(2):210–212. [PubMed] [Google Scholar]
60. Onishi K, Maruyama Y. Compound rib-latissimus dorsi osteomusculocutaneous flap in reconstruction of the upper arm. Ann Plast Surg. 1996;37(2):191–194. [PubMed] [Google Scholar]
61. Sundaresh D C, Gopalakrishnan D, Shetty N. Vascularised rib graft defects of the diaphysis of the humerus in children. A report of two cases. J Bone Joint Surg Br. 2000;82(1):28–32. [PubMed] [Google Scholar]
62. Werner C M, Favre P, van Lenthe H G, Dumont C E. Pedicled vascularized rib transfer for reconstruction of clavicle nonunions with bony defects: anatomical and biomechanical considerations. Plast Reconstr Surg. 2007;120(1):173–180. [PubMed] [Google Scholar]
63. Unlü R E, Kargi A E, Celebioğlu S, Erdoğan B, Sensöz O. Reconstruction of the upper extremity with a compound rib-latissimus dorsi osteomusculocutaneous flap. Scand J Plast Reconstr Surg Hand Surg. 2002;36(1):34–38. [PubMed] [Google Scholar]
64. Niazi Z B, McLean N R, Black M J. The radial forearm flap: a reconstructive chameleon. J Reconstr Microsurg. 1994;10(5):299–304. [PubMed] [Google Scholar]
65. Cormack G C, Duncan M J, Lamberty B G. The blood supply of the bone component of the compound osteo-cutaneous radial artery forearm flap—an anatomical study. Br J Plast Surg. 1986;39(2):173–175. [PubMed] [Google Scholar]
66. Zaidemberg C, Siebert J W, Angrigiani C. A new vascularized bone graft for scaphoid nonunion. J Hand Surg Am. 1991;16(3):474–478. [PubMed] [Google Scholar]
67. Steinmann S P, Bishop A T, Berger R A. Use of the 1,2 intercompartmental supraretinacular artery as a vascularized pedicle bone graft for difficult scaphoid nonunion. J Hand Surg Am. 2002;27(3):391–401. [PubMed] [Google Scholar]
68. Malizos K N, Dailiana Z H, Kirou M, Vragalas V, Xenakis T A, Soucacos P N. Longstanding nonunions of scaphoid fractures with bone loss: successful reconstruction with vascularized bone grafts. J Hand Surg [Br] 2001;26(4):330–334. [PubMed] [Google Scholar]
69. Tsai T T, Chao E K, Tu Y K, Chen A C, Lee M S, Ueng S W. Management of scaphoid nonunion with avascular necrosis using 1, 2 intercompartmental supraretinacular arterial bone grafts. Chang Gung Med J. 2002;25(5):321–328. [PubMed] [Google Scholar]
70. Boyer M I, von Schroeder H P, Axelrod T S. Scaphoid nonunion with avascular necrosis of the proximal pole. Treatment with a vascularized bone graft from the dorsum of the distal radius. J Hand Surg [Br] 1998;23(5):686–690. [PubMed] [Google Scholar]
71. Straw R G, Davis T R, Dias J J. Scaphoid nonunion: treatment with a pedicled vascularized bone graft based on the 1,2 intercompartmental supraretinacular branch of the radial artery. J Hand Surg [Br] 2002;27(5):413. [PubMed] [Google Scholar]
72. Chang M A, Bishop A T, Moran S L, Shin A Y. The outcomes and complications of 1,2-intercompartmental supraretinacular artery pedicled vascularized bone grafting of scaphoid nonunions. J Hand Surg Am. 2006;31(3):387–396. [PubMed] [Google Scholar]
73. Hirche C, Heffinger C, Xiong L. et al.The 1,2-intercompartmental supraretinacular artery vascularized bone graft for scaphoid nonunion: management and clinical outcome. J Hand Surg Am. 2014;39(3):423–429. [PubMed] [Google Scholar]
74. Hertel R, Masquelet A C. The reverse flow medial knee osteoperiosteal flap for skeletal reconstruction of the leg. Description and anatomical basis. Surg Radiol Anat. 1989;11(4):257–262. [PubMed] [Google Scholar]
75. Sakai K, Doi K, Kawai S. Free vascularized thin corticoperiosteal graft. Plast Reconstr Surg. 1991;87(2):290–298. [PubMed] [Google Scholar]
76. Yamamoto H, Jones D B Jr, Moran S L, Bishop A T, Shin A Y. The arterial anatomy of the medial femoral condyle and its clinical implications. J Hand Surg Eur Vol. 2010;35(7):569–574. [PubMed] [Google Scholar]
77. Friedrich J B, Pederson W C, Bishop A T, Galaviz P, Chang J. New workhorse flaps in hand reconstruction. Hand (NY) 2012;7(1):45–54. [PMC free article] [PubMed] [Google Scholar]
78. Rahmanian-Schwarz A, Spetzler V, Amr A, Pfau M, Schaller H E, Hirt B. A composite osteomusculocutaneous free flap from the medial femoral condyle for reconstruction of complex defects. J Reconstr Microsurg. 2011;27(4):251–260. [PubMed] [Google Scholar]
79. Pelzer M, Reichenberger M, Germann G. Osteo-periosteal-cutaneous flaps of the medial femoral condyle: a valuable modification for selected clinical situations. J Reconstr Microsurg. 2010;26(5):291–294. [PubMed] [Google Scholar]
80. Iorio M L, Masden D L, Higgins J P. Cutaneous angiosome territory of the medial femoral condyle osteocutaneous flap. J Hand Surg Am. 2012;37(5):1033–1041. [PubMed] [Google Scholar]
81. Doi K, Sakai K. Vascularized periosteal bone graft from the supracondylar region of the femur. Microsurgery. 1994;15(5):305–315. [PubMed] [Google Scholar]
82. Jones D B Jr, Bürger H, Bishop A T, Shin A Y. Treatment of scaphoid waist nonunions with an avascular proximal pole and carpal collapse. A comparison of two vascularized bone grafts. J Bone Joint Surg Am. 2008;90(12):2616–2625. [PubMed] [Google Scholar]
83. Kakar S, Duymaz A, Steinmann S, Shin A Y, Moran S L. Vascularized medial femoral condyle corticoperiosteal flaps for the treatment of recalcitrant humeral nonunions. Microsurgery. 2011;31(2):85–92. [PubMed] [Google Scholar]
84. Fuchs B, Steinmann S P, Bishop A T. Free vascularized corticoperiosteal bone graft for the treatment of persistent nonunion of the clavicle. J Shoulder Elbow Surg. 2005;14(3):264–268. [PubMed] [Google Scholar]
85. De Smet L. Treatment of non-union of forearm bones with a free vascularised corticoperiosteal flap from the medial femoral condyle. Acta Orthop Belg. 2009;75(5):611–615. [PubMed] [Google Scholar]
86. Jones D B Jr, Rhee P C, Bishop A T, Shin A Y. Free vascularized medial femoral condyle autograft for challenging upper extremity nonunions. Hand Clin. 2012;28(4):493–501. [PubMed] [Google Scholar]
87. Del Piñal F, García-Bernal F J, Regalado J, Ayala H, Cagigal L, Studer A. Vascularised corticoperiosteal grafts from the medial femoral condyle for difficult non-unions of the upper limb. J Hand Surg Eur Vol. 2007;32(2):135–142. [PubMed] [Google Scholar]
88. Yajima H, Maegawa N, Ota H, Kisanuki O, Kawate K, Takakura Y. Treatment of persistent non-union of the humerus using a vascularized bone graft from the supracondylar region of the femur. J Reconstr Microsurg. 2007;23(2):107–113. [PubMed] [Google Scholar]
89. Bürger H K, Windhofer C, Gaggl A J, Higgins J P. Vascularized medial femoral trochlea osteocartilaginous flap reconstruction of proximal pole scaphoid nonunions. J Hand Surg Am. 2013;38(4):690–700. [PubMed] [Google Scholar]
90. Hugon S, Koninckx A, Barbier O. Vascularized osteochondral graft from the medial femoral trochlea: anatomical study and clinical perspectives. Surg Radiol Anat. 2010;32(9):817–825. [PubMed] [Google Scholar]
91. Kälicke T, Bürger H, Müller E J. [A new vascularized cartilague-bone-graft for scaphoid nonunion with avascular necrosis of the proximal pole. Description of a new type of surgical procedure] Unfallchirurg. 2008;111(3):201–205. [PubMed] [Google Scholar]
92. Rao S S, Sexton C C, Higgins J P. Medial femoral condyle flap donor-site morbidity: a radiographic assessment. Plast Reconstr Surg. 2013;131(3):357e–362e. [PubMed] [Google Scholar]
93. Katz R D, Parks B G, Higgins J P. The axial stability of the femur after harvest of the medial femoral condyle corticocancellous flap: a biomechanical study of composite femur models. Microsurgery. 2012;32(3):213–218. [PubMed] [Google Scholar]
94. del Piñal F, Guerrero-Navarro M L, Studer A, Thams C, Moraleda E. Reconstruction of the ulnar head with a vascularized second metatarsal head: case report. J Hand Surg Am. 2012;37(8):1568–1573. [PubMed] [Google Scholar]
95. del Piñal F, Klausmeyer M, Moraleda E. et al.Vascularized graft from the metatarsal base for reconstructing major osteochondral distal radius defects. J Hand Surg Am. 2013;38(10):1883–1895. [PubMed] [Google Scholar]
96. Pho R W. Malignant giant-cell tumor of the distal end of the radius treated by a free vascularized fibular transplant. J Bone Joint Surg Am. 1981;63(6):877–884. [PubMed] [Google Scholar]
97. Taylor G I, Wilson K R, Rees M D, Corlett R J, Cole W G. The anterior tibial vessels and their role in epiphyseal and diaphyseal transfer of the fibula: experimental study and clinical applications. Br J Plast Surg. 1988;41(5):451–469. [PubMed] [Google Scholar]
98. Innocenti M, Delcroix L, Manfrini M, Ceruso M, Capanna R. Vascularized proximal fibular epiphyseal transfer for distal radial reconstruction. J Bone Joint Surg Am. 2004;86-A(7):1504–1511. [PubMed] [Google Scholar]
99. Akinbo O, Strauch R. Physeal transfers for skeletal reconstruction. J Hand Surg Am. 2008;33(4):584–590. [PubMed] [Google Scholar]
100. Medrykowski F, Barbary S, Gibert N, Lascombes P, Dautel G. Vascularized proximal fibular epiphyseal transfer: two cases. Orthop Traumatol Surg Res. 2012;98(6):728–732. [PubMed] [Google Scholar]
101. Innocenti M Delcroix L Romano G F Capanna R Vascularized epiphyseal transplant Orthop Clin North Am 200738195–101., vii [PubMed] [Google Scholar] |