训练用单针/双针带线【出售】-->外科训练模块总目录
0.5、1、2、3.5、5mm仿生血管仿生体 - 胸腹一体式腹腔镜模拟训练器
仿气腹/半球形腹腔镜模拟训练器
[单端多孔折叠]腹腔镜模拟训练器
「训练教具器械汇总」管理员微信/QQ12087382[问题反馈]
开启左侧

颈丛神经阻滞

[复制链接]
发表于 2019-1-22 00:00:26 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

×
概要
颈丛神经阻滞(CPB)已用于各种头颈部外科手术,以提供充分的麻醉和/或镇痛作用;然而,该块在颈部区域的狭窄空间中进行,该区域包含许多敏感结构,多个筋膜层和复杂的神经支配。由于2004年除了表面和深层CPB之外引入了中间CPB,因此对CPB的命名和定义,特别是中间CPB存在一些混淆。此外,随着超声波在头颈部区域的作用扩大,CPB可以在超声引导下更安全和准确地进行。在这篇综述中,作者将描述这些方法,包括超声引导技术,以及常规深层和浅层CPB的临床应用;此外,作者还将讨论有关中间CPB的争议性问题,包括术语和可能经常被忽视的相关潜在不良反应,重点关注颈筋膜层和颈丛的解剖。最后,作者将尝试改进基于目标区室的CPB方法的分类,其可以在超声引导下容易地识别,同时考虑每种CPB方法的效果。

关键词:气道阻塞,颈筋膜,颈丛,颈丛阻滞,膈神经麻痹,超声检查

介绍
颈丛神经阻滞(CPB)为头颈部区域提供有效的麻醉和镇痛[1-7]; CPB最常见的临床用途是颈动脉内膜切除术(CEA)[8-12]。传统上,CPB被分类为深层或浅层[13],但在2004年,Telford和Stoneham [14]建议中间CPB除了表面和深层CPB之外还包括子投资筋膜注射,其基础是尸体研究。潘迪特等人。 [15]。 2010年,Choquet等人。 [16]试图使用超声技术改进中间CPB的概念。然而,“表面的”,“中间的”和“深的”是定义不明确的解剖学术语,其仅表示组织相对于皮肤的地形关系;因此,CPB的命名和定义存在一些混淆,特别是中间CPB。

由于超声波在头颈部区域的作用已经扩大,CPB可以在超声引导下更安全和准确地进行,用于轻松识别各种重要的标志物,包括肌肉,颈椎,大血管,神经和颈筋膜[17]。特别是,了解颈筋膜的详细配置对于成功的CPB是必不可少的,因为已知某些颈筋膜在局部麻醉剂溶液的扩散中具有重要作用[15,18-20]。尽管如此,从区域麻醉的角度来看,颈筋膜的结构特征尚未得到充分研究。此外,对于深颈部筋膜的准确识别存在分歧,特别是在颈椎侧区[21-24],并且也存在解剖变异[20,25]。

因此,本综述首先描述了颈筋膜层和颈丛的解剖学,然后是进行CPB的方法,包括超声技术,然后是常规深层和浅层CPB的效果以及相对较新但有争议的中间CPB。此外,本次审查将讨论可能经常被忽视的与CPB相关的潜在不利影响,并最终尝试根据可在超声引导下轻松识别的目标区室改进CPB方法的分类,同时考虑其影响和潜力每种CPB方法的不良影响。

解剖学
颈筋膜
颈筋膜层的研究对于预测疾病的传播[26-28],优化手术治疗[29],并在颈部区域进行区域麻醉[15,18-20]具有临床意义,并且颈筋膜改变可能起作用在慢性颈痛的发病机制中发挥重要作用[30,31]。然而,关于颈部区域的筋膜排列和筋膜间隙的定义的描述是不一致和不清楚的,并且术语是可变的。根据第41版格雷解剖学[32],筋膜被描述为“鞘,片或其他足以使肉眼可见的结缔组织块”,并且筋膜研究大会的筋膜命名委员会将其描述为“鞘,片或任何其他可分解的结缔组织聚集体,在皮肤下形成,以附着,包围和分离肌肉和其他内部器官”[33]。尽管如此,尽管使用了更新的技术和材料来保存和研究筋膜结构,但颈筋膜的结构分类一直是争议的主题。正如Grodinsky和Holyoke [34]在他们1938年基于尸体解剖的开创性研究中所描述的那样,解剖颈筋膜间隙的固有困难以及将它们分组的明显人为性可能会在颈筋膜的描述和不同作者之间的差异中产生混淆。根据Guidera等人最近的工作。 [35],颈筋膜可分为浅表和深层,但不是使用术语“浅表颈筋膜”,更具体的术语“皮下组织”有助于减少与深颈椎浅层的混淆筋膜[36]。深颈筋膜可以分为三层[35] :( a)浅层,也称为投射筋膜,但现在称为咀嚼肌筋膜,下颌下筋膜或胸锁乳突肌(SCM) - 斜方筋膜,虽然有人认为SCM和斜方肌之间的SCM-trapezius筋膜是不完整的[21,22]; (b)中间层,建议称为带肌筋膜或内脏筋膜; (c)深层,建议将其命名为椎前筋膜而不是椎前筋膜,因为术语“椎前筋膜”仅应用于前部。包含主要血管,颈部深部淋巴结和神经的颈动脉空间是CPB期间可能受影响的非常重要的结构,并且该空间通常被称为“颈动脉鞘及其内容物”[36]。根据文献[37,38],颈动脉鞘是一种明确的组织学结构,与其他筋膜层不同,颈总动脉鞘显示出个体间和/或部位依赖性的厚度变化。然而,对颈动脉鞘是否由所有三层深颈筋膜形成,仅是深颈部筋膜的深层或浅层,或者没有可证明的筋膜层存在分歧[36]。 Palliyalil等。 [39]描述颈动脉鞘是一个强大的纤维弹性组织屏障,在颈部手术后屏蔽其内容物免受唾液和局部感染,但局部麻醉剂似乎渗入颈动脉鞘[40]。图1显示了作为Guidera等人的颈筋膜的示意图。 [35]建议。

1.jpg
图。1。
如Guidera等人所建议的颈筋膜层(C6横切面)。 [35]。该插图改编自Smoker和Harnsberger [41]。

颈丛
颈丛位于椎弓根肌和中斜角肌之间的凹槽中,位于椎前筋膜下方,但不在肌间沟中,因为前斜角肌几乎不存在于C4或C3水平的近端[42]。两个神经环由C2至C4的相邻前脊神经的结合形成,发出四个浅表感觉分支,按颅尾顺序列出如下:枕骨较小(C2,C3),耳廓较大(C2, C3),横向颈椎(C2,C3)和锁骨上神经(C3,C4);这些最初在后面运行并很快刺穿椎前筋膜。然后,它们穿过SCM和椎前肌之间的筋膜间隙,然后通过SCM肌肉的神经点到达颈部的皮肤和表面结构[43,44]。因此,颈丛的表面分支从椎旁空间到相应的表面端点行进相对较长的距离,包括颈部的皮肤和皮下组织以及头部和肩部的后部[45,46]。相反,从上部(C1-C2)和下部(C2-C3)根部向前内侧发出的纤维在中耳窦中央肌腱的水平处结合形成环状,即颈部[47]。已知颈袢为舌骨下肌和SCM肌提供运动分支[48],其起源和分布有很大程度的变化[49];然而,颈袢被怀疑有传入神经元复合物[50]。 C3和C4的前部分支形成环,并且该环的分支与C5连接以产生膈神经。已知颈丛与脊髓副神经,舌下神经,面神经,迷走神经,舌咽神经和交感神经干[479,51]吻合。图2显示了深部和浅表颈丛的示意图。

2.jpg
图2。
深颈丛和浅颈丛的示意图。 (A)使用黄色描绘颈丛的四个浅表分支,并且使用绿色描绘颈丛(柄颈部)的深分支。已知颈丛与几个颅神经和交感神经干吻合。 (B)浅表性颈丛出现在SCM(胸锁乳突肌)肌肉的后缘之后,并支配头部,颈部和肩部区域。该图示改编自Restrepo等人。 [52]。

颈丛神经阻滞方法
CPB可以在深层,表层或中间层面执行,尽管这些术语定义不明确。

深颈丛神经阻滞
深CPB被描述为靶向C2-C4脊神经的椎旁阻滞[13,53],这可以通过单次注射或通过三次单独注射来实现[13,53,54]。在椎旁空间进行的深部CPB不仅可以阻断浅表分支,还可以阻断颈丛的深部分支,从而导致颈部肌肉松弛,尽管这在临床上并未显示出重要性[10,14,55]。此外,如果颈椎病也有传入神经元复合物[50],深部CPB在治疗涉及舌骨下和/或SCM肌肉的颈部手术或颈部疼痛后的术后疼痛方面具有更多的临床意义。 Wan等人。 [56]和Goldberg等人。 [57]报道C2或C3横突的深部CPB可有效治疗颈源性头痛。深部CPB也适用于甲状腺或甲状旁腺手术[58,59],口腔颌面外科[3]和CEA [60-64],以获得充分的麻醉和/或镇痛。由于其深度终点,深CPB可产生主要并发症,如血管内注射,硬膜外或蛛网膜下腔注射和膈神经麻痹[12,65];然而,随着超声引入,深CPB已成为一种相对安全和简单的手术[3,42,66,67]。对于超声引导(USG)深CPB,Perisanidis等。 [3]和Saranteas等人。 [67]简单地在超声引导下将局部麻醉剂注入椎前筋膜和颈椎横突之间的空间,但Wan等人。 [56]和桑德曼等人。 [66]在超声引导下针接触目标颈椎横突后注射局麻药。

浅表性颈丛神经阻滞
表面CPB通常被描述为在SCM肌肉后缘的中部进行的皮下注射技术,其靶向颈丛的浅表分支[12,13]。这种用于浅表CPB的常规皮下浸润技术可以使用超声引导技术[68]进行,并且,根据头颈部区域的手术类型,也可以阻断颈部的一个或多个表面分支。通过使用标志[1,4,69,70]或超声技术[71-74]选择性地丛。与深层CPB不同,浅层CPB具有较低的并发症风险,易于掌握[12,59,75]。尽管如此,在浅表CPB期间,重要的是确保针尖位于皮下组织中以避免深部阻滞的不利影响[76,77]。单侧或双侧浅表CPB可用于各种头颈部手术后的术后镇痛[1,78,79],微创甲状旁腺切除术[59],鼓膜乳突手术[4],颈椎前路椎间盘切除术和融合术[5] ],幕下和枕骨开颅术[80]。它也可以作为外耳手术的唯一麻醉方式[74]。浅表CPB还可用作肩部,锁骨,乳房和上胸壁外科手术的辅助阻滞,特别是通过阻断锁骨上分支。在Ajou大学医院,作者一直在儿科和成人患者的各种浅表头部,颈部和上胸壁手术中应用基于标志性的浅表CPB,以获得麻醉和/或镇痛(图3)。

3.jpg
图3。
已经对耳朵,颈部和上胸壁手术进行了基于地标的浅表性神经丛阻滞,以在Ajou大学医院获得足够的麻醉和/或镇痛。 (A)在接受耳道血管瘤切除的77岁男性患者中进行了大耳廓和较小的枕骨神经阻滞。 (B)选择性锁骨上神经阻滞在4岁女性患者中进行,该患者在右上胸壁上切除先天性黑素细胞痣。 (C)在右颈部区域切除鳞状细胞癌的94岁女性患者进行了大耳廓和横向颈神经阻滞。 (D)选择性锁骨上神经阻滞在一名52岁的男性患者中进行,该患者在右上胸壁上切开并引流脓肿。 为避免深度注射,针稍微弯曲。

中间颈丛神经阻滞
历史
2002年,张和李[21]报道,SCM和斜方肌之间的空间中不存在深筋膜的投资层,这个区域称为颈后三角[81]。他们在尸体中使用环氧树脂片塑化进行了剖面解剖学研究,但他们的结果仍然存在争议[24,35,36]。有趣的是,在第41版格雷解剖学[82]中,描述了SCM和斜方肌之间的投射筋膜由乳晕组织形成,这与浅表颈筋膜无法区分。尽管如此,在2003年,Pandit等人。 [15]引入了一种新的概念,即子投资筋膜注射技术(对于椎前筋膜表面但在投资筋膜下),作为执行浅表CPB的一种方法。在这项研究中,潘迪特等人。 [15]假设通过椎前筋膜在浅表和深层空间之间存在交流,这可以解释为什么表面CPB的效果与深CPB的效果相当,并且在CEA期间结合深部和浅表CPB [10,62] 。 2004年,Telford和Stoneham [14]预计这个中间CPB也可能产生与深CPB相同的效果,同时避免深CPB的一些实际困难;然而,这可能与通过椎前筋膜的通信实际存在的偶然性有关。 2007年,Pandit等人。 [12]清楚地指出,中间块是注射针刺穿颈部的投射筋膜,深入皮下层但对于椎前筋膜浅表的块。在这种情况下,椎前筋膜的可渗透性质必须是一个重要问题,因为它最终可以确定中间CPB的特征;然而,有几篇文章[7,9,83-85]已经在Pandit的假设[15]的基础上发表,中间CPB的注射可以通过椎前筋膜扩散到深部组织,因此中间CPB可以有类似的效果虽然没有临床研究验证椎前筋膜的可渗透性,但是对于深部CPB。

技术和命名
Barone等人的研究。 [85],Ramachandran等。 [8],和Merdad等人。 [83]虽然Merdad等人使用了标志性地图和失去抵抗力或流行技术,但他们采用了一种盲目的方法,用于中间CPB,目标是投射筋膜和椎前筋膜之间的空间。 [83]使用术语“表面”CPB而不是“中间”CPB。尽管如此,即使是非常有经验的从业者也可能不容易将针尖精确地放置在所需的空间而无需借助超声波检查。自Kefalianakis等人。 [86] 2005年发布了针对CEA的SCM和前斜角肌之间空间的USG CPB的第一份报告,USG CPB变得更受欢迎,因为它可以在目标空间中安全准确地执行[87]。 2010年,Choquet等人。 [16]主张中间CPB应针对C4水平的后颈椎间隙(PCS)。 Choquet等人描述的PCS。 [16]是SCM和椎前肌之间的筋膜间隙,可以在横断面成像中看到。他们使用超声波技术并认为PCS对应于Pandit等人描述的子投资筋膜空间。 [15]。深部组织引起的颈丛浅表分支在穿透椎前筋膜后穿过该空间,通过SCM肌肉的后缘离开皮肤和浅表组织[16]。

自Choquet等人。 [16]使用超声技术引入了中间体CPB,许多研究已经以USG中间体CPB [3,9,11,63,84,85,88-95]的名义发表。在这些研究中,作者对中间CPB进行后路或前路手术以获得CEA的麻醉和/或镇痛[63,84,92-95],涉及SCM肌肉的手术[90,91]和颈部食管憩室切除术[ 88]在超声引导下。对于中间CPB的USG后路入路,在通过超声扫描从C7椎骨增量确定目标颈水平后,SCM和中斜角肌位于屏幕的中间。此时,使用中斜角肌的前缘作为放置针尖的标志,针在内侧方向(面内技术)中前进到PCS(SCM和椎前肌之间的筋膜间隙)。 。然后,缓慢而小心地注射局部麻醉剂,同时观察局部麻醉剂在PCS中的扩散[90,91]。 USA中间CPB的前路可能在CEA期间提供与其他区域技术类似的结果[89]。根据Leblanc等人的说法。 [92],USG中间CPB易于操作,安全可靠。相比之下,一些作者[96-99]在PCS中进行了USG中间CPB,但他们将这些描述为USG浅表CPB。在Stoneham等人的CEA局部麻醉回顾中。 [55],CPB被描述为五种技术:表浅,深层,USG表面,USG深层和USG中间CPB。在这篇综述中,Stoneham等人。 [55]描述了USG浅表CPB作为涉及在椎前筋膜下方推进邻近颈丛的阻滞针的方法。然而,如果阻滞针刺穿椎前筋膜,它就不再被归类为中间CPB,如Telford和Stoneham,[14]和Pandit等。 [12,15]最初提出,也不是经典的浅表CPB;因此,在这种情况下使用术语“表浅”是不合适的。

CPB方法命名法的上述差异的原因似乎是由于阻滞的位置和颈丛的分支被阻塞。 在颈椎旁间隙(C2-C4)进行的CPB可同时阻断颈丛的浅支和深支[53],尽管作者称其为深部而非浅表CPB,给定阻滞位置 执行。 因此,在PCS中进行的CPB技术的命名导致局部麻醉剂的筋膜间扩散更适合称为中间CPB而不是浅表CPB,即使中间和浅表CPB基本上针对相同的浅表分支。 颈丛。

中间神经丛阻滞的影响
重要的是,与浅表CPB相比,中间CPB可以提供不同的麻醉和镇痛作用。已知颈丛(C2-C4)为SCM肌肉提供感觉神经支配,包括本体感觉,与脊髓副神经的可变吻合[43,400-104]。因此,SCM肌肉似乎具有复杂的神经支配,但是在刺穿椎前筋膜后供给SCM肌肉的神经的颈部分支已知与SCM肌肉的后表面或内侧的脊髓副神经吻合[ 100101105]。虽然已知脊髓副神经本身也具有感觉功能[52,106,107],但颈椎神经丛(颈袢)被认为是SCM肌肉除脊髓副神经外的另一种运动神经支配来源[48,52,108- 110]。因此,在特定颈椎水平的PCS中准确执行的USG中间CPB可以阻断颈丛的所有四个皮肤分支和同时供应SCM肌肉的颈丛的感觉/运动分支,从而它为颈部手术提供了足够的麻醉和镇痛作用,包括手术[90]或切除SCM肌肉[91]。同样,Yerzingatsian [111]建议将局部麻醉剂直接沉积到SCM肌肉中,以阻断颈丛的感觉分支,在局部麻醉期间支配SCM肌肉进行甲状腺切除术。根据Senapathi等人的说法。 [99]尽管作者使用术语“USG浅表CPB”代替USG中间体CPB,USG中间体CPB比浅表CPB的多向皮下注射技术更有效,用于减少甲状腺切除术后的疼痛。此外,与SCM肌肉相关的疼痛,如SCM综合征[112],或与SCM肌肉中的触发点相关的疼痛[113-115]可以通过该技术在理论上进行治疗。在Ajou大学医院,如果需要,定期在儿科和成人患者中进行针对PCS-C4水平的USG中间CPB的后路手术(图4)。相反,皮下进行的经典浅表CPB不会产生这些中间阻滞效应。在这方面,虽然目前尚不清楚投影筋膜(SCM-trapezius筋膜)是否存在于后颈三角区,但将浅表CPB定义为涉及多方向或单个皮下的技术是合理的。注射针对颈丛的一个或多个浅表分支,无论使用超声技术。此外,虽然表面和中间CPB基本上都针对颈丛神经的相同表面分支,但中间CPB可能会产生一些表面CPB不会产生的不良事件。

4.jpg
图4。
在患有单切除胸锁乳突肌(SCM)并伴有肌切除术的3岁斜颈患者中,C4-5水平的中间颈丛神经阻滞的后路入路的超声图像。通过局部麻醉可以看到SCM肌肉和椎前筋膜之间的后颈椎间隙,并且局部麻醉剂扩散到颈动脉鞘附近的区域。 CA:颈动脉,IJV:颈内静脉,LA:局部麻醉。白色箭头指向:椎前筋膜。

颈丛神经阻滞和颈动脉内膜切除术
CPB最常见的临床用途是CEA。 CEA是有症状的颈动脉狭窄相关的中风预防干预[116,117],其涉及皮肤,颈阔肌,颈动脉鞘和颈动脉的切口。自1988年CPA首次报告CEA [118]以来,CPA的各种技术已经在CEA中进行了评估,尽管CEA的理想麻醉技术仍然存在争议[54,119-121]。 Stoneham等。 [10] 1998年和Pandit等人。 [62] 2000年报道,浅表CPB与CEA的深层或浅层CPB一样有效。然而,在CPB下的CEA期间,无论CPB方法的类型如何,外科医生常常对皮下或深部组织补充局部麻醉剂[74,94,122],可能是因为在颈部结构内,包括颈动脉鞘,是一些受颅神经支配的区域,甚至深CPB也不能达到[8,51,94,123-125],或者中线附近的切口疼痛,可能是由对侧纤维介导的[8,74,123,126]。赛德尔等人。 [19]证实了面神经颈支与颈丛神经横向颈神经之间的恒定吻合。利多卡因喷雾完全缓解了CEA期间切口颈动脉鞘的疼痛[124],颅神经(舌咽神经和迷走神经)和交感神经干被认为与颈动脉和鞘提供感觉神经支配有关。 [51,94,124];因此,在CEA期间向颈动脉附近输送局部麻醉剂可能是合理的。最近,单个USG中间CPB [62,84,89,92,95]或USG中间CPB与USG浸润局部麻醉剂进入颈动脉血管周围[9,11,93,94]已成为一种新选择在CEA期间减少外科医生对术中局部麻醉剂的补充量,同时减少CEA深层CPB的使用。然而,局部麻醉剂直接浸润到颈动脉血管周围区域会因颅神经麻痹而产生一些不良反应[9,11,93,94,127,128]。

与颈丛神经阻滞有关的安全问题
膈神经麻痹
膈神经由C3至C5的腹侧支柱形成,并且在椎前筋膜下方的前斜角肌表面上以向下倾斜的方向从外侧延伸至内侧。根据Castresana等人的说法。 [129],结合深部和浅表的CPB,61%的患者出现膈肌运动的急性异常。值得注意的是,只要注射在皮下组织中准确进行,传统的浅表CPB似乎不可能影响膈神经[53] [77]。所有接受深部CPB的患者不会出现膈肌运动异常的原因之一可能是解剖学变化,包括第5颈神经占优势和有无膈神经[129]。此外,SCM肌肉是呼吸的辅助肌肉,当膈肌较弱时这是必不可少的[130-132]。已知深部CPB主要与膈肌麻痹相关[129],与SCM肌肉的松弛相结合可导致对呼吸功能的影响比作者之前已知的更严重,特别是对于有临床显著肺病或疑似的患者膈肌运动异常[133]。

椎前筋膜(颈深筋膜的深层)形成管状护套的脊柱和与其相关联的肌肉,如颈长和头长肌前方,所述scalenes横向和颈深肌肉向后[13, 43。根据文献,这种椎前筋膜似乎通过形成一个水密空间[134]起到阻碍局部麻醉药扩散[134]甚至脓肿[26,135]的作用,这表明椎间隙内的化脓不会由于这个隔间的紧凑性,它可以在任何方向上快速延伸[26]。还有证据表明局部麻醉可以在星状神经节阻滞期间扩张椎前筋膜[136],并且在中间CPB期间局部麻醉剂被捕获在PCS中[3]。最近,使用新鲜尸体,Seidel等。 [19]研究了使用超声波技术注入PCS的注射染料溶液的传播;因此,与Pandit的假设相反,染料保留在PCS中,暗示椎前筋膜是不可渗透的[15]。尽管如此,Seidel等人。 [19]建议需要进行临床研究以研究膈神经阻滞是否可用中间体CPB预防。

与深部CPB [42,64]和肌间沟臂丛神经阻滞[137]不同,两者都不可避免地需要穿刺椎前筋膜并在颈椎根部附近注射局部麻醉剂,USG中间CPB可能影响膈神经似乎低,可能是由于上述椎前筋膜的保护性[26,134,135],这也在赛德尔等人的尸体研究中得到证实。 [19],以及膈神经的位置和过程[77]。 Martusevicius等。 [9]在60名患者中进行了类似于USG中间CPB的USG区域麻醉技术,这种技术没有导致手臂无力或呼吸困难,在Tran等人的研究中也是如此。 [97]尽管在超声引导下局部麻醉剂沉积在SCM和斜角肌之间的PCS中,但没有观察到无意的臂丛神经阻滞,霍纳氏综合征或呼吸困难的情况。与这些研究结果一致,Kim等人进行了两项研究。 [90,91]也显示,在接受机器人甲状腺切除术的成人患者中单个USG中间CPB后患有臂丛神经阻滞,霍纳氏综合征或呼吸困难的迹象,以及患有单纯肌萎缩的SCM肌肉患者的脊髓神经阻滞患者。此外,Calderon等人。 [89]描述尽管在USG中间CPB期间观察到局部麻醉剂在PCS中的扩散,但未检测到局部麻醉剂在椎前筋膜之外的扩散,这也可能是支持椎前筋膜具有的概念的重要证据。保护肿块。然而,目前,证据不足以证实椎前筋膜的真实性质,必须在临床试验中对其进行研究。

气道阻塞
由于组织水肿或血肿引起的机械性气道阻塞是各种颈部手术后广泛认可的手术并发症,包括甲状腺切除术[138]和CEA [139,140]。特别是在CEA期间,包括解剖,牵引和收缩在内的外科手术可损伤面神经,舌下神经,迷走神经,包括其分支(复发和上喉神经),或手术区内的舌咽神经[141-144]。其中,迷走神经双侧损伤,喉返神经或舌下神经可导致致命的上气道阻塞[141,145]。尽管与单个深CPB相关的颅神经阻滞的数据很少[59,61,127],但深部CPB可能使舌咽,迷走神经,舌下神经和副神经麻痹,特别是当局部麻醉的头部扩散发生时,这是合理的,因为广泛的神经在下颅神经和上颈神经之间存在吻合,尽管这在个体之间变化很大[51,53]。因此,重要的是要记住,双侧深部CPB不仅可以引起双侧膈神经麻痹,还可以通过使迷走神经或舌下神经麻痹而导致致命的气道阻塞。更重要的是,对于既往存在的对侧迷走神经(或喉返神经)或舌下神经损伤的患者,即使是单侧深部CPB也可导致全部气道阻塞;因此,虽然预先存在的单侧声带麻痹通常在临床上无症状[127,146],单侧舌下神经麻痹显示残疾最小[145],术前常规病史采取和舌头和声带的体检对于深入患者是必要的无论麻醉技术如何,CPB [59]以及接受CEA治疗的患者[147]。

如前所述,外科医生或麻醉师在CEA期间直接将局麻药浸入颈动脉区域可能有效阻断颈动脉鞘或动脉的切口疼痛[124,148],但也可能产生与颈动脉鞘或动脉有关的不良反应。阻塞颅神经[9,11,93,94,127,128],除了压力感受器反射受损[94]。最近,USG技术涉及在颈动脉区域浸润局部麻醉剂,结合皮下浸润或中间CPB,以减少CEA期间局部麻醉剂的术中补充[9,11,93,94]。根据Casutt等人的说法。 [148],通过将局部麻醉剂和造影剂的混合物注射到颈动脉的腹侧进行的USG颈动脉鞘阻滞导致局部麻醉剂的广泛扩散,这通过块后CT图像证实。 Martusevicius等。 [9]报道,72%,13%和12%的患者分别接受了USG中间CPB和USG旁颈动脉浸润局部麻醉药的临时声音嘶哑,面神经麻痹和吞咽困难。因此,局部麻醉剂向颈动脉旁的区域的双侧浸润可能导致致命的气道阻塞。

关于中间CPB,PCS中局部麻醉剂的扩散模式可能是重要的。在筋膜间平面阻滞期间,许多因素可能影响局部麻醉剂的扩散和阻滞的质量,同时需要精确的针头放置,以及对筋膜组织解剖结构和结构的深入理解[149]。 Zhang和Lee [21]认为PCS实际上是皮下组织的延伸,并且颈动脉鞘变得附着在皮下脂肪组织上而没有任何明显的筋膜划分。在临床环境中,作者经常看到局部麻醉剂很容易向颈动脉鞘扩散,即使在USG中间CPB后路手术中注射针的尖端位于前斜角肌或长毛肌和中斜角肌之间(图4)。 Tran等人。 [97]比较USG和基于地标的浅表CPB对接受肩部和锁骨手术的患者;然而,他们使用的USG CPB技术实际上是USG中间CPB,如本文所述,向PCS注射10ml局部麻醉剂,而不是USG浅表CPB,而他们的基于地标的表面CPB实际上是皮下CPB 。他们报告不存在呼吸困难,去饱和和臂丛神经阻滞,但超声组中10%的患者发生吞咽声音嘶哑或困难。 Leblanc等人。 [92]报道发声障碍发生率为12%,Horner综合征发生率为4%,单次USG中间CPB使用10 ml局部麻醉剂治疗CEA后2%患者出现吞咽障碍,但他们故意推进针尖关闭到颈动脉鞘注射。相比之下,Alilet等人。在使用10毫升局部麻醉剂治疗CEA的单个USG中间体CPB期间[95]没有使针尖靠近颈动脉鞘,并且他们报告了舌下神经的声音嘶哑(2.4%)和麻痹的发生率非常低(2.4) %)。因此,可以假设单个USG中间体CPB后声音嘶哑和吞咽困难的发生率可能取决于阻滞技术以及局部麻醉剂的注射体积。相反,当中间体CPB与局麻药的颈动脉浸润相结合时,观察到声音嘶哑和吞咽困难的发生率更高[9,93,94]。

声音嘶哑(发音困难),可能与阻塞迷走神经或其分支(复发性喉上神经)有关,吞咽困难,可能与迷走神经,舌咽或舌下神经阻滞有关,面神经阻滞可能是USG中间CPB期间局部麻醉药内侧向上扩散的结果。 USG中间CPB后由于同侧阻塞迷走神经,喉返神经或喉上神经引起的暂时性发音困难通常不具有临床意义。然而,双侧阻塞迷走神经,喉返神经或舌下神经可诱发致命的气道阻塞。因此,双侧中间CPB可能是危险的,甚至单侧CPB也可导致先前存在的对侧迷走神经或舌下神经损伤患者的气道阻塞,这可能需要常规的术前检查。在USG中间CPB期间,为了避免无意的颅神经阻塞,将提倡将针尖放置在颈动脉鞘外的PCS孔中,使用少量局部麻醉剂,并在观察时缓慢注射局部麻醉剂局部麻醉剂的扩散,从而限制局部麻醉药向颈动脉鞘的内侧扩散[90,91],除非需要颈动脉鞘阻滞。

其他不良影响
霍纳综合征本身并没有任何临床后果,但它是一种令人不快的副作用,尽管它可能不被描述为并发症[150]。中间CPB后Horner综合征的发生可能是有争议的,因为颈椎交感神经链相对于椎前筋膜的位置,椎前筋膜的可渗透性以及局部麻醉剂在PCS中向颈动脉扩散的程度中间CPB期间的护套可能会有一些影响。 Usui等。 [42]和Civelek等人。 [151]描述了颈交感神经链直接位于覆盖长肌的椎前筋膜下面;相反,在第41版格雷的解剖学[152]中,声称颈交感神经干位于颈动脉鞘后面的椎前筋膜上。尽管如此,在浅表性CPB [59],浅表和深层CPB [59,63],单一USG中间CPB [92,98],以及USG中间CPB和局部麻醉剂的paracarotid浸润相结合后,报道了Horner综合征的发生[59]。 [9,11,94]。然而,根据Lyons和Mills [25],在12个尸体颈部解剖中,颈部交感神经链在2个尸体的颈动脉鞘内被发现。这种解剖学变异不仅可能在颈部解剖或颈内静脉的简单导管插入术中对交感神经链造成损害[153],而且还影响在有或没有颈动脉浸润局部麻醉剂的CPB期间Horner综合征的发生。

脊柱副神经麻痹的最常见原因是颈部手术期间的医源性损伤,尤其是位于颈后三角的手术[106,154]。在解剖学上,脊柱副神经进入Erb's点上方2cm处的后颈三角区,然后斜向穿过后颈三角形,以在斜方肌上部的前表面结束,有许多变化[155]。在后颈三角区,副神经位于椎前筋膜浅表[156];因此,它可能在浅表CPB期间受到影响[53],但是针对SCM肌肉下面的PCS的中间CPB不太可能影响脊髓副神经[157]。

细化颈丛神经阻滞的分类
对于CPB技术的系统化命名,作者可以基于关于颈筋膜,神经支配和本综述中描述的相关临床报告的解剖学研究,提出三种CPB的实际分类(图5)。第一种技术是浅表CPB,其涉及围绕SCM肌肉后缘的多方向或单次皮下注射,针对颈丛的浅表分支,无论使用超声技术。还可以执行该浅表CPB以通过界标或超声技术选择性地阻断颈丛的一个或多个表面分支。表面的CPB非常有用,安全且易于学习,每个区域麻醉师都应该掌握。第二种技术是中间CPB,其涉及将注射针放置在C4水平的PCS(SCM肌肉和椎前筋膜之间)中,针对颈丛的浅表分支和可能的颈部感觉/运动分支。供应SCM肌肉的丛。 USG中间CPB易于学习和复制,但不应忽视潜在的不良影响。最后,深CPB涉及在C2-C4水平的椎前筋膜和颈神经根之间放置针,同时针对颈丛的浅表和深支。尽管有一些优势,但深层CPB可能需要在应用前分析风险和收益。对于安全和成功的中间CPB和深CPB,强烈建议使用超声技术。

5.jpg
图5。
示意性地描绘了颈部筋膜空间中的三个不同的颈丛神经阻滞(CPB)的目标区域(C4横截面)。 (A)浅表CPB的目标区域是胸锁乳突肌(SCM)肌肉后缘中部周围的皮下组织。 (B)中间CPB的目标区域是SCM肌肉和椎前筋膜之间的空间。 (C)深CPB的目标区域是椎前筋膜和目标横突之间的空间。

摘要
CPB在颈部区域进行,颈部区域具有高复杂性,在狭窄空间中具有多个筋膜层。最近,有人提出了一种新的更具体的颈筋膜术语,但对颈筋膜的准确识别和描述仍然存在争议,包括投资和椎前筋膜以及颈动脉鞘。此外,颈筋膜层的解剖学变化可对每种CPB方法的效果产生显著影响。因此,目前,很难描述每种CPB方法的真实效果,尽管现在大多数CPB方法在超声引导下正确且安全地执行。在这篇综述中,作者详细讨论了中间CPB,这是一种相对较新的技术,但存在一些有争议的问题。虽然中间CPB的阻滞效应和潜在的不利影响需要进一步研究,但作者只是将CPB分为三种一般方法,浅表,中间和深层,基于每种方法的目标区间,可以在超声波上轻松识别。

参考:
1. Kesisoglou I, Papavramidis T, Michalopoulos N, Ioannidis K, Trikoupi A, Sapalidis K, et al. Superficial selective cervical plexus block following total thyroidectomy: a randomized trial. Head Neck. 2010;32:984–8. [PubMed]
2. Tobias JD. Cervical plexus block in adolescents. J Clin Anesth. 1999;11:606–8. [PubMed]
3. Perisanidis C, Saranteas T, Kostopanagiotou G. Ultrasound-guided combined intermediate and deep cervical plexus nerve block for regional anaesthesia in oral and maxillofacial surgery. Dentomaxillofac Radiol. 2013;42:29945724. [PMC free article] [PubMed]
4. Suresh S, Barcelona SL, Young NM, Seligman I, Heffner CL, Coté CJ. Postoperative pain relief in children undergoing tympanomastoid surgery: is a regional block better than opioids? Anesth Analg. 2002;94:859–62. [PubMed]
5. Mariappan R, Mehta J, Massicotte E, Nagappa M, Manninen P, Venkatraghavan L. Effect of superficial cervical plexus block on postoperative quality of recovery after anterior cervical discectomy and fusion: a randomized controlled trial. Can J Anaesth. 2015;62:883–90. [PubMed]
6. Hardy D. Relief of pain in acute herpes zoster by nerve blocks and possible prevention of post-herpetic neuralgia. Can J Anaesth. 2005;52:186–90. [PubMed]
7. Shin HY, Kim DS, Kim SS. Superficial cervical plexus block for management of herpes zoster neuralgia in the C3 dermatome: a case report. J Med Case Rep. 2014;8:59. [PMC free article] [PubMed]
8. Ramachandran SK, Picton P, Shanks A, Dorje P, Pandit JJ. Comparison of intermediate vs subcutaneous cervical plexus block for carotid endarterectomy. Br J Anaesth. 2011;107:157–63. [PubMed]
9. Martusevicius R, Swiatek F, Joergensen LG, Nielsen HB. Ultrasound-guided locoregional anaesthesia for carotid endarterectomy: a prospective observational study. Eur J Vasc Endovasc Surg. 2012;44:27–30. [PubMed]
10. Stoneham MD, Doyle AR, Knighton JD, Dorje P, Stanley JC. Prospective, randomized comparison of deep or superficial cervical plexus block for carotid endarterectomy surgery. Anesthesiology. 1998;89:907–12. [PubMed]
11. Rössel T, Kersting S, Heller AR, Koch T. Combination of high-resolution ultrasound-guided perivascular regional anesthesia of the internal carotid artery and intermediate cervical plexus block for carotid surgery. Ultrasound Med Biol. 2013;39:981–6. [PubMed]
12. Pandit JJ, Satya-Krishna R, Gration P. Superficial or deep cervical plexus block for carotid endarterectomy: a systematic review of complications. Br J Anaesth. 2007;99:159–69. [PubMed]
13. Winnie AP, Ramamurthy S, Durrani Z, Radonjic R. Interscalene cervical plexus block: a single-injection technic. Anesth Analg. 1975;54:370–5. [PubMed]
14. Telford RJ, Stoneham MD. Correct nomenclature of superficial cervical plexus blocks. Br J Anaesth. 2004;92:775. [PubMed]
15. Pandit JJ, Dutta D, Morris JF. Spread of injectate with superficial cervical plexus block in humans: an anatomical study. Br J Anaesth. 2003;91:733–5. [PubMed]
16. Choquet O, Dadure C, Capdevila X. Ultrasound-guided deep or intermediate cervical plexus block: the target should be the posterior cervical space. Anesth Analg. 2010;111:1563–4. [PubMed]
17. Saranteas T, Paraskeuopoulos T, Anagnostopoulou S, Kanellopoulos I, Mastoris M, Kostopanagiotou G. Ultrasound anatomy of the cervical paravertebral space: a preliminary study. Surg Radiol Anat. 2010;32:617–22. [PubMed]
18. Guay J, Grabs D. A cadaver study to determine the minimum volume of methylene blue or black naphthol required to completely color the nerves relevant for anesthesia during breast surgery. Clin Anat. 2011;24:202–8. [PubMed]
19. Seidel R, Schulze M, Zukowski K, Wree A. Ultrasound-guided intermediate cervical plexus block. Anatomical study. Anaesthesist. 2015;64:446–50. [PubMed]
20. Shakespeare TJ, Tsui BC. Intermittent hoarseness with continuous interscalene brachial plexus catheter infusion due to deficient carotid sheath. Acta Anaesthesiol Scand. 2013;57:1085–6. [PubMed]
21. Zhang M, Lee AS. The investing layer of the deep cervical fascia does not exist between the sternocleidomastoid and trapezius muscles. Otolaryngol Head Neck Surg. 2002;127:452–4. [PubMed]
22. Zhang MN. Investing layer of the cervical fascia of the neck may not exit. Anesthesiology. 2006;104:1344–5. [PubMed]
23. Pandit JJ, Dorje P, Satya-Krishna R. Investing layer of the cervical fascia of the neck may not exist. Anesthesiology. 2006;104:1344. [PubMed]
24. Natale G, Condino S, Stecco A, Soldani P, Belmonte MM, Gesi M. Is the cervical fascia an anatomical proteus? Surg Radiol Anat. 2015;37:1119–27. [PubMed]
25. Lyons AJ, Mills CC. Anatomical variants of the cervical sympathetic chain to be considered during neck dissection. Br J Oral Maxillofac Surg. 1998;36:180–2. [PubMed]
26. Levitt GW. Cervical fascia and deep neck infections. Laryngoscope. 1970;80:409–35. [PubMed]
27. Gidley PW, Ghorayeb BY, Stiernberg CM. Contemporary management of deep neck space infections. Otolaryngol Head Neck Surg. 1997;116:16–22. [PubMed]
28. Granite EL. Anatomic considerations in infections of the face and neck: review of the literature. J Oral Surg. 1976;34:34–44. [PubMed]
29. Moncada R, Warpeha R, Pickleman J, Spak M, Cardoso M, Berkow A, et al. Mediastinitis from odontogenic and deep cervical infection. Anatomic pathways of propagation. Chest. 1978;73:497–500. [PubMed]
30. Stecco A, Meneghini A, Stern R, Stecco C, Imamura M. Ultrasonography in myofascial neck pain: randomized clinical trial for diagnosis and follow-up. Surg Radiol Anat. 2014;36:243–53. [PubMed]
31. Tschopp KP, Gysin C. Local injection therapy in 107 patients with myofascial pain syndrome of the head and neck. ORL J Otorhinolaryngol Relat Spec. 1996;58:306–10. [PubMed]
32. Standring S. Gray’s Anatomy. 41th ed. London: Churchill Livingstone Elsevier; 2016. p. 41.
33. Adstrum S, Hedley G, Schleip R, Stecco C, Yucesoy CA. Defining the fascial system. J Bodyw Mov Ther. 2017;21:173–7. [PubMed]
34. Grodinsky M, Holyoke EA. The fasciae and fascial spaces of the head, neck and adjacent regions. Am J Anat. 1938;63:367–408.
35. Guidera AK, Dawes PJ, Fong A, Stringer MD. Head and neck fascia and compartments: no space for spaces. Head Neck. 2014;36:1058–68. [PubMed]
36. Guidera AK, Dawes PJ, Stringer MD. Cervical fascia: a terminological pain in the neck. ANZ J Surg. 2012;82:786–91. [PubMed]
37. Hayashi S. Histology of the human carotid sheath revisited. Okajimas Folia Anat Jpn. 2007;84:49–60. [PubMed]
38. Piffer CR. Mesoscopic and microscopic study of the carotid sheath. Acta Anat (Basel) 1980;106:393–9. [PubMed]
39. Palliyalil M, Anehosur V, Joshi A, Acharya S. Histological assessment of the carotid sheath in patients with oral squamous cell carcinoma. J Oral Maxillofac Surg. 2017;75:2465–76. [PubMed]
40. Kimura T, Nishiwaki K, Yokota S, Komatsu T, Shimada Y. Severe hypertension after stellate ganglion block. Br J Anaesth. 2005;94:840–2. [PubMed]
41. Smoker WR, Harnsberger HR. Differential diagnosis of head and neck lesions based on their space of origin. 2. The infrahyoid portion of the neck. AJR Am J Roentgenol. 1991;157:155–9. [PubMed]
42. Usui Y, Kobayashi T, Kakinuma H, Watanabe K, Kitajima T, Matsuno K. An anatomical basis for blocking of the deep cervical plexus and cervical sympathetic tract using an ultrasound-guided technique. Anesth Analg. 2010;110:964–8. [PubMed]
43. Moore K, Dalley AF, Agur AM. Clinically Oriented Anatomy. 7th ed. Balimore: Lippincott Williams & Wilkins; 2014. p. 988.
44. Havet E, Duparc F, Tobenas-Dujardin AC, Muller JM, Fréger P. Morphometric study of the shoulder and subclavicular innervation by the intermediate and lateral branches of supraclavicular nerves. Surg Radiol Anat. 2007;29:605–10. [PubMed]
45. de Arruda JV, Sartini Filho R, Neder AC, Ranali J. Intraoral anesthesia of the cervical plexus responsible for the sensory innervation of the platysma muscle or skin of the neck. Rev Bras Odontol. 1974;31:229–31. [PubMed]
46. Standring S. Gray's Anatomy. 41th ed. London: Churchill Livingstone Elsevier; 2016. pp. 463–4.
47. Paraskevas GK, Natsis K, Nitsa Z, Mavrodi A, Kitsoulis P. Unusual morphological pattern and distribution of the ansa cervicalis: a case report. Rom J Morphol Embryol. 2014;55:993–6. [PubMed]
48. Brennan PA, Alam P, Ammar M, Tsiroyannis C, Zagkou E, Standring S. Sternocleidomastoid innervation from an aberrant nerve arising from the hypoglossal nerve: a prospective study of 160 neck dissections. Surg Radiol Anat. 2017;39:205–9. [PubMed]
49. Jelev L. Some unusual types of formation of the ansa cervicalis in humans and proposal of a new morphological classification. Clin Anat. 2013;26:961–5. [PubMed]
50. Khaki AA, Shokouhi G, Shoja MM, Farahani RM, Zarrintan S, Khaki A, et al. Ansa cervicalis as a variant of spinal accessory nerve plexus: a case report. Clin Anat. 2006;19:540–3. [PubMed]
51. Shoja MM, Oyesiku NM, Shokouhi G, Griessenauer CJ, Chern JJ, Rizk EB, et al. A comprehensive review with potential significance during skull base and neck operations, Part II: glossopharyngeal, vagus, accessory, and hypoglossal nerves and cervical spinal nerves 1-4. Clin Anat. 2014;27:131–44. [PubMed]
52. Restrepo CE, Tubbs RS, Spinner RJ. Expanding what is known of the anatomy of the spinal accessory nerve. Clin Anat. 2015;28:467–71. [PubMed]
53. Masters RD, Castresana EJ, Castresana MR. Superficial and deep cervical plexus block: technical considerations. AANA J. 1995;63:235–43. [PubMed]
54. Merle JC, Mazoit JX, Desgranges P, Abhay K, Rezaiguia S, Dhonneur G, et al. A comparison of two techniques for cervical plexus blockade: evaluation of efficacy and systemic toxicity. Anesth Analg. 1999;89:1366–70. [PubMed]
55. Stoneham MD, Stamou D, Mason J. Regional anaesthesia for carotid endarterectomy. Br J Anaesth. 2015;114:372–83. [PubMed]
56. Wan Q, Yang H, Li X, Lin C, Ke S, Wu S, et al. Ultrasound-guided versus fluoroscopy-guided deep cervical plexus block for the treatment of cervicogenic headache. Biomed Res Int. 2017;2017:4654803. [PMC free article] [PubMed]
57. Goldberg ME, Schwartzman RJ, Domsky R, Sabia M, Torjman MC. Deep cervical plexus block for the treatment of cervicogenic headache. Pain Physician. 2008;11:849–54. [PubMed]
58. Aunac S, Carlier M, Singelyn F, De Kock M. The analgesic efficacy of bilateral combined superficial and deep cervical plexus block administered before thyroid surgery under general anesthesia. Anesth Analg. 2002;95:746–50. [PubMed]
59. Pintaric TS, Hocevar M, Jereb S, Casati A, Novak Jankovic V. A prospective, randomized comparison between combined (deep and superficial) and superficial cervical plexus block with levobupivacaine for minimally invasive parathyroidectomy. Anesth Analg. 2007;105:1160–3. [PubMed]
60. Davies MJ, Silbert BS, Scott DA, Cook RJ, Mooney PH, Blyth C. Superficial and deep cervical plexus block for carotid artery surgery: a prospective study of 1000 blocks. Reg Anesth. 1997;22:442–6. [PubMed]
61. Ivanec Z, Mazul-Sunkol B, Lovricević I, Sonicki Z, Gvozdenović A, Klican K, et al. Superficial versus combined (deep and superficial) cervical plexus block for carotid endarterectomy. Acta Clin Croat. 2008;47:81–6. [PubMed]
62. Pandit JJ, Bree S, Dillon P, Elcock D, McLaren ID, Crider B. A comparison of superficial versus combined (superficial and deep) cervical plexus block for carotid endarterectomy: a prospective, randomized study. Anesth Analg. 2000;91:781–6. [PubMed]
63. Sait Kavaklı A, Kavrut Öztürk N, Umut Ayoğlu R, Sağdıç K, Çakmak G, İnanoğlu K, et al. Comparison of combined (deep and superficial) and intermediate cervical plexus block by use of ultrasound guidance for carotid endarterectomy. J Cardiothorac Vasc Anesth. 2016;30:317–22. [PubMed]
64. Dhonneur G, Saidi NE, Merle JC, Asfazadourian H, Ndoko SK, Bloc S. Demonstration of the spread of injectate with deep cervical plexus block: a case series. Reg Anesth Pain Med. 2007;32:116–9. [PubMed]
65. Carling A, Simmonds M. Complications from regional anaesthesia for carotid endarterectomy. Br J Anaesth. 2000;84:797–800. [PubMed]
66. Sandeman DJ, Griffiths MJ, Lennox AF. Ultrasound guided deep cervical plexus block. Anaesth Intensive Care. 2006;34:240–4. [PubMed]
67. Saranteas T, Kostopanagiotou GG, Anagnostopoulou S, Mourouzis K, Sidiropoulou T. A simple method for blocking the deep cervical nerve plexus using an ultrasound-guided technique. Anaesth Intensive Care. 2011;39:971–2. [PubMed]
68. Shin HJ, Yu HN, Yoon SZ. Ultrasound-guided subcutaneous cervical plexus block for carotid endarterectomy in a patient with chronic obstructive pulmonary disease. J Anesth. 2014;28:304–5. [PubMed]
69. Herbland A, Cantini O, Reynier P, Valat P, Jougon J, Arimone Y, et al. The bilateral superficial cervical plexus block with 0.75% ropivacaine administered before or after surgery does not prevent postoperative pain after total thyroidectomy. Reg Anesth Pain Med. 2006;31:34–9. [PubMed]
70. Wyburn-Mason R. The nature of tic douloureux; treatment by alcohol block or section of the great auricular nerve. Br Med J. 1953;2:119–22. [PMC free article] [PubMed]
71. Thallaj A. Ultrasound guidance of uncommon nerve blocks. Saudi J Anaesth. 2011;5:392–4. [PMC free article] [PubMed]
72. Maybin J, Townsley P, Bedforth N, Allan A. Ultrasound guided supraclavicular nerve blockade: first technical description and the relevance for shoulder surgery under regional anaesthesia. Anaesthesia. 2011;66:1053–5. [PubMed]
73. Flores S, Herring AA. Ultrasound-guided greater auricular nerve block for emergency department ear laceration and ear abscess drainage. J Emerg Med. 2016;50:651–5. [PubMed]
74. Ritchie MK, Wilson CA, Grose BW, Ranganathan P, Howell SM, Ellison MB. Ultrasound-guided greater auricular nerve block as sole anesthetic for ear surgery. Clin Pract. 2016;6:856. [PMC free article] [PubMed]
75. Guay J. Regional anesthesia for carotid surgery. Curr Opin Anaesthesiol. 2008;21:638–44. [PubMed]
76. Broderick AJ, Mannion S. Brachial plexus blockade as a result of aberrant anatomy after superficial cervical plexus block. Reg Anesth Pain Med. 2010;35:476–7. [PubMed]
77. Cornish PB. Applied anatomy of cervical plexus blockade. Anesthesiology. 1999;90:1790–1. [PubMed]
78. Mayhew D, Sahgal N, Khirwadkar R, Hunter JM, Banerjee A. Analgesic efficacy of bilateral superficial cervical plexus block for thyroid surgery: meta-analysis and systematic review. Br J Anaesth. 2018;120:241–51. [PubMed]
79. Kannan S, Surhonne NS, R CK, B K, D DR, R S RR. Effects of bilateral superficial cervical plexus block on sevoflurane consumption during thyroid surgery under entropy-guided general anesthesia: a prospective randomized study. Korean J Anesthesiol. 2018;71:141–8. [PMC free article] [PubMed]
80. Girard F, Quentin C, Charbonneau S, Ayoub C, Boudreault D, Chouinard P, et al. Superficial cervical plexus block for transitional analgesia in infratentorial and occipital craniotomy: a randomized trial. Can J Anaesth. 2010;57:1065–70. [PubMed]
81. Tubbs RS, Loukas M, Shoja MM, Salter EG, Oakes WJ, Blount JP. Approach to the cervical portion of the vagus nerve via the posterior cervical triangle: a cadaveric feasibility study with potential use in vagus nerve stimulation procedures. J Neurosurg Spine. 2006;5:540–2. [PubMed]
82. Standring S. Gray's Anatomy. 41th ed. London: Churchill Livingstone Elsevier; 2016. p. 445.
83. Merdad M, Crawford M, Gordon K, Papsin B. Unexplained fever after bilateral superficial cervical block in children undergoing cochlear implantation: an observational study. Can J Anaesth. 2012;59:28–33. [PubMed]

84. Koköfer A, Nawratil J, Felder TK, Stundner O, Mader N, Gerner P. Ropivacaine 0.375% vs. 0.75% with prilocaine for intermediate cervical plexus block for carotid endarterectomy: a randomised trial. Eur J Anaesthesiol. 2015;32:781–9. [PubMed]
85. Barone M, Diemunsch P, Baldassarre E, Oben WE, Ciarlo M, Wolter J, et al. Carotid endarterectomy with intermediate cervical plexus block. Tex Heart Inst J. 2010;37:297–300. [PMC free article] [PubMed]
86. Kefalianakis F, Koeppel T, Geldner G, Gahlen J. Carotid-surgery in ultrasound-guided anesthesia of the regio colli lateralis. Anasthesiol Intensivmed Notfallmed Schmerzther. 2005;40:576–81. [PubMed]
87. Ciccozzi A, Angeletti C, Guetti C, Pergolizzi J, Angeletti PM, Mariani R, et al. Regional anaesthesia techniques for carotid surgery: the state of art. J Ultrasound. 2014;17:175–83. [PMC free article] [PubMed]
88. Barone M, Brigand C, Sonnek T, Ramlugun D, Calon B, Rottenberg D, et al. Intermediate cervical plexus block for cervical esophagus diverticulectomy. Acta Anaesthesiol Belg. 2015;66:59–61. [PubMed]
89. Calderon AL, Zetlaoui P, Benatir F, Davidson J, Desebbe O, Rahali N, et al. Ultrasound-guided intermediate cervical plexus block for carotid endarterectomy using a new anterior approach: a two-centre prospective observational study. Anaesthesia. 2015;70:445–51. [PubMed]
90. Kim JS, Lee J, Soh EY, Ahn H, Oh SE, Lee JD, et al. Analgesic effects of ultrasound-guided serratus-intercostal plane block and ultrasound-guided intermediate cervical plexus block after single-incision transaxillary robotic thyroidectomy: a prospective, randomized, controlled trial. Reg Anesth Pain Med. 2016;41:584–8. [PubMed]
91. Kim JS, Joe HB, Park MC, Ahn H, Lee SY, Chae YJ. Postoperative analgesic effect of ultrasound-guided intermediatecervical plexus block on unipolar sternocleidomastoid release with myectomy in pediatric patients with congenital muscular torticollis: a prospective, randomized controlled trial. Reg Anesth Pain Med. 2018;43:634–40. [PubMed]
92. Leblanc I, Chterev V, Rekik M, Boura B, Costanzo A, Bourel P, et al. Safety and efficiency of ultrasound-guided intermediate cervical plexus block for carotid surgery. Anaesth Crit Care Pain Med. 2016;35:109–14. [PubMed]
93. Mądro P, Dąbrowska A, Jarecki J, Garba P. Anaesthesia for carotid endarterectomy. Ultrasound-guided superficial/intermediate cervical plexus block combined with carotid sheath infiltration. Anaesthesiol Intensive Ther. 2016;48:234–8. [PubMed]
94. Seidel R, Zukowski K, Wree A, Schulze M. Ultrasound-guided intermediate cervical plexus block and perivascular local anesthetic infiltration for carotid endarterectomy: a randomized controlled trial. Anaesthesist. 2016;65:917–24. [PubMed]
95. Alilet A, Petit P, Devaux B, Joly C, Samain E, Pili-Floury S, et al. Ultrasound-guided intermediate cervical block versus superficial cervical block for carotid artery endarterectomy: the randomized-controlled CERVECHO trial. Anaesth Crit Care Pain Med. 2017;36:91–5. [PubMed]
96. Herring AA, Stone MB, Frenkel O, Chipman A, Nagdev AD. The ultrasound-guided superficial cervical plexus block for anesthesia and analgesia in emergency care settings. Am J Emerg Med. 2012;30:1263–7. [PubMed]
97. Tran DQ, Dugani S, Finlayson RJ. A randomized comparison between ultrasound-guided and landmark-based superficial cervical plexus block. Reg Anesth Pain Med. 2010;35:539–43. [PubMed]
98. Flores S, Riguzzi C, Herring AA, Nagdev A. Horner's syndrome after superficial cervical plexus block. West J Emerg Med. 2015;16:428–31. [PMC free article] [PubMed]
99. Senapathi TGA, Widnyana IMG, Aribawa IGNM, Wiryana M, Sinardja IK, Nada IKW, et al. Ultrasound-guided bilateral superficial cervical plexus block is more effective than landmark technique for reducing pain from thyroidectomy. J Pain Res. 2017;10:1619–22. [PMC free article] [PubMed]
100. Caliot P, Cabanié P, Bousquet V, Midy D. A contribution to the study of the innervation of the sternocleidomastoid muscle. Anat Clin. 1984;6:21–8. [PubMed]
101. Koizumi M, Horiguchi M, Sekiya S, Isogai S, Nakano M. A case of the human sternocleidomastoid muscle additionally innervated by the hypoglossal nerve. Okajimas Folia Anat Jpn. 1993;69:361–7. [PubMed]
102. Cvetko E. Sternocleidomastoid muscle additionally innervated by the facial nerve: case report and review of the literature. Anat Sci Int. 2015;90:54–6. [PubMed]
103. Paraskevas G, Lazaridis N, Spyridakis I, Koutsouflianiotis K, Kitsoulis P. Aberrant innervation of the sternocleidomastoid muscle by the transverse cervical nerve: a case report. J Clin Diagn Res. 2015;9:AD01–2. [PMC free article] [PubMed]
104. Hayward R. Observations on the innervation of the sternomastoid muscle. J Neurol Neurosurg Psychiatry. 1986;49:951–3. [PMC free article] [PubMed]
105. Caliot P, Bousquet V, Midy D, Cabanié P. A contribution to the study of the accessory nerve: surgical implications. Surg Radiol Anat. 1989;11:11–5. [PubMed]
106. Tubbs RS, Sorenson EP, Watanabe K, Loukas M, Hattab E, Cohen-Gadol AA. Histologic confirmation of neuronal cell bodies along the spinal accessory nerve. Br J Neurosurg. 2014;28:746–9. [PubMed]
107. Bremner-Smith AT, Unwin AJ, Williams WW. Sensory pathways in the spinal accessory nerve. J Bone Joint Surg Br. 1999;81:226–8. [PubMed]
108. Pu YM, Tang EY, Yang XD. Trapezius muscle innervation from the spinal accessory nerve and branches of the cervical plexus. Int J Oral Maxillofac Surg. 2008;37:567–72. [PubMed]
109. Fitzgerald MJ, Comerford PT, Tuffery AR. Sources of innervation of the neuromuscular spindles in sternomastoid and trapezius. J Anat. 1982;134:471–90. [PMC free article] [PubMed]
110. Yoshizaki F. Innervation of sternocleidomastoid muscle of man and the rabbit. Okayama Igakkai Zasshi. 1961;73:159–71.
111. Yerzingatsian KL. Thyroidectomy under local analgesia: the anatomical basis of cervical blocks. Ann R Coll Surg Engl. 1989;71:207–10. [PMC free article] [PubMed]
112. Missaghi B. Sternocleidomastoid syndrome: a case study. J Can Chiropr Assoc. 2004;48:201–5. [PMC free article] [PubMed]
113. Min SH, Chang SH, Jeon SK, Yoon SZ, Park JY, Shin HW. Posterior auricular pain caused by the trigger points in the sternocleidomastoid muscle aggravated by psychological factors -A case report- Korean J Anesthesiol. 2010;59 Suppl:S229–32. [PMC free article] [PubMed]
114. Bodes-Pardo G, Pecos-Martín D, Gallego-Izquierdo T, Salom-Moreno J, Fernández-de-Las-Peñas C, Ortega-Santiago R. Manual treatment for cervicogenic headache and active trigger point in the sternocleidomastoid muscle: a pilot randomized clinical trial. J Manipulative Physiol Ther. 2013;36:403–11. [PubMed]
115. Shinozaki T, Sakamoto E, Shiiba S, Ichikawa F, Arakawa Y, Makihara Y, et al. Cervical plexus block helps in diagnosis of orofacial pain originating from cervical structures. Tohoku J Exp Med. 2006;210:41–7. [PubMed]
116. North American Symptomatic Carotid Endarterectomy Trial Collaborators. Barnett HJM, Taylor DW, Haynes RB, Sackett DL, Peerless SJ, et al. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991;325:445–53. [PubMed]
117. Bonati LH, Dobson J, Featherstone RL, Ederle J, van der Worp HB, de Borst GJ, et al. Long-term outcomes after stenting versus endarterectomy for treatment of symptomatic carotid stenosis: the International Carotid Stenting Study (ICSS) randomised trial. Lancet. 2015;385:529–38. [PMC free article] [PubMed]
118. Parrot D, Fontaine P, Coulon C, Guyon P, David M. Carotid endarterectomy under cervical plexus block. Cah Anesthesiol. 1988;36:255–9. [PubMed]
119. Schechter MA, Shortell CK, Scarborough JE. Regional versus general anesthesia for carotid endarterectomy: the American College of Surgeons National Surgical Quality Improvement Program perspective. Surgery. 2012;152:309–14. [PubMed]
120. Unic-Stojanovic D, Babic S, Neskovic V. General versus regional anesthesia for carotid endarterectomy. J Cardiothorac Vasc Anesth. 2013;27:1379–83. [PubMed]
121. Kfoury E, Dort J, Trickey A, Crosby M, Donovan J, Hashemi H, et al. Carotid endarterectomy under local and/or regional anesthesia has less risk of myocardial infarction compared to general anesthesia: An analysis of national surgical quality improvement program database. Vascular. 2015;23:113–9. [PubMed]
122. de Sousa AA, Filho MA, Faglione W, Jr, Carvalho GT. Superficial vs combined cervical plexus block for carotid endarterectomy: a prospective, randomized study. Surg Neurol. 2005;63 Suppl 1:S22–5. [PubMed]
123. Umbrain VJ, van Gorp VL, Schmedding E, Debing EE, von Kemp K, van den Brande PM, et al. Ropivacaine 3.75 mg/ml, 5 mg/ml, or 7.5 mg/ml for cervical plexus block during carotid endarterectomy. Reg Anesth Pain Med. 2004;29:312–6. [PubMed]
124. Einav S, Landesberg G, Prus D, Anner H, Berlatzky Y. A case of nerves. Reg Anesth. 1996;21:168–70. [PubMed]
125. Kavrut Ozturk N, Kavakli AS, Sagdic K, Inanoglu K, Umot Ayoglu R. A randomized controlled trial examining the effect of the addition of the mandibular block to cervical plexus block for carotid endarterectomy. J Cardiothorac Vasc Anesth. 2018;32:877–82. [PubMed]
126. Capek S, Tubbs RS, Spinner RJ. Do cutaneous nerves cross the midline? Clin Anat. 2015;28:96–100. [PubMed]
127. Harris RJ, Benveniste G. Recurrent laryngeal nerve blockade in patients undergoing carotid endarterectomy under cervical plexus block. Anaesth Intensive Care. 2000;28:431–3. [PubMed]
128. Kwok AO, Silbert BS, Allen KJ, Bray PJ, Vidovich J. Bilateral vocal cord palsy during carotid endarterectomy under cervical plexus block. Anesth Analg. 2006;102:376–7. [PubMed]
129. Castresana MR, Masters RD, Castresana EJ, Stefansson S, Shaker IJ, Newman WH. Incidence and clinical significance of hemidiaphragmatic paresis in patients undergoing carotid endarterectomy during cervical plexus block anesthesia. J Neurosurg Anesthesiol. 1994;6:21–3. [PubMed]
130. Campbell EJ. The role of the scalene and sternomastoid muscles in breathing in normal subjects; an electromyographic study. J Anat. 1955;89:378–86. [PMC free article] [PubMed]
131. Lisboa C, Paré PD, Pertuzé J, Contreras G, Moreno R, Guillemi S, et al. Inspiratory muscle function in unilateral diaphragmatic paralysis. Am Rev Respir Dis. 1986;134:488–92. [PubMed]
132. Bonnevie T, Gravier FE, Ducrocq A, Debeaumont D, Viacroze C, Cuvelier A, et al. Exercise testing in patients with diaphragm paresis. Respir Physiol Neurobiol. 2018;248:31–5. [PubMed]
133. Stoneham MD, Wakefield TW. Acute respiratory distress after deep cervical plexus block. J Cardiothorac Vasc Anesth. 1998;12:197–8. [PubMed]
134. Lookman AA. Brachial plexus infiltration; single injection technique. Anaesthesia. 1958;13:5–18. [PubMed]
135. Warshafsky D, Goldenberg D, Kanekar SG. Imaging anatomy of deep neck spaces. Otolaryngol Clin North Am. 2012;45:1203–21. [PubMed]
136. Shibata Y, Fujiwara Y, Komatsu T. A new approach of ultrasound-guided stellate ganglion block. Anesth Analg. 2007;105:550–1. [PubMed]
137. Urmey WF, Talts KH, Sharrock NE. One hundred percent incidence of hemidiaphragmatic paresis associated with interscalene brachial plexus anesthesia as diagnosed by ultrasonography. Anesth Analg. 1991;72:498–503. [PubMed]
138. Suzuki S, Yasunaga H, Matsui H, Fushimi K, Saito Y, Yamasoba T. Factors associated with neck hematoma after thyroidectomy: a retrospective analysis using a japanese inpatient database. Medicine (Baltimore) 2016;95:e2812 [PMC free article] [PubMed]
139. Carmichael FJ, McGuire GP, Wong DT, Crofts S, Sharma S, Montanera W. Computed tomographic analysis of airway dimensions after carotid endarterectomy. Anesth Analg. 1996;83:12–7. [PubMed]
140. Kwok OK, Sun KO, Ahchong AK, Chan CK. Airway obstruction following carotid endarterectomy. Anaesth Intensive Care. 2004;32:818–20. [PubMed]
141. Reifenberger G, Prior R, Deckert M, Wechsler W. Epidermal growth factor receptor expression and growth fraction in human tumours of the nervous system. Virchows Arch A Pathol Anat Histopathol. 1989;414:147–55. [PubMed]
142. Fokkema M, de Borst GJ, Nolan BW, Indes J, Buck DB, Lo RC, et al. Clinical relevance of cranial nerve injury following carotid endarterectomy. Eur J Vasc Endovasc Surg. 2014;47:2–7. [PMC free article] [PubMed]
143. Hye RJ, Mackey A, Hill MD, Voeks JH, Cohen DJ, Wang K, et al. Incidence, outcomes, and effect on quality of life of cranial nerve injury in the carotid revascularization endarterectomy versus stenting trial. J Vasc Surg. 2015;61:1208–14. [PMC free article] [PubMed]
144. Hertzer NR, Feldman BJ, Beven EG, Tucker HM. A prospective study of the incidence of injury to the cranial nerves during carotid endarterectomy. Surg Gynecol Obstet. 1980;151:781–4. [PubMed]
145. Bageant TE, Tondini D, Lysons D. Bilateral hypoglossal-nerve palsy following a second carotid endarterectomy. Anesthesiology. 1975;43:595–6. [PubMed]
146. Weiss A, Isselhorst C, Gahlen J, Freudenberg S, Roth H, Hammerschmitt N, et al. Acute respiratory failure after deep cervical plexus block for carotid endarterectomy as a result of bilateral recurrent laryngeal nerve paralysis. Acta Anaesthesiol Scand. 2005;49:715–9. [PubMed]
147. Espinoza FI, MacGregor FB, Doughty JC, Cooke LD. Vocal fold paralysis following carotid endarterectomy. J Laryngol Otol. 1999;113:439–41. [PubMed]
148. Casutt M, Breitenmoser I, Werner L, Seelos R, Konrad C. Ultrasound-guided carotid sheath block for carotid endarterectomy: a case series of the spread of injectate. Heart Lung Vessel. 2015;7:168–76. [PMC free article] [PubMed]
149. Elsharkawy H, Pawa A, Mariano ER. Interfascial plane blocks: back to basics. Reg Anesth Pain Med. 2018;43:341–6. [PubMed]
150. Avidan A. Horner's syndrome is not a complication of a brachial plexus block. Reg Anesth Pain Med. 2004;29:378. [PubMed]
151. Civelek E, Karasu A, Cansever T, Hepgul K, Kiris T, Sabanci A, et al. Surgical anatomy of the cervical sympathetic trunk during anterolateral approach to cervical spine. Eur Spine J. 2008;17:991–5. [PMC free article] [PubMed]
152. Standring S. Gray’s Anatomy. 41th ed. London: Churchill Livingstone Elsevier; 2017. p. 468.
153. Ahmad M, Hayat A. Horner's syndrome following internal jugular vein dialysis catheter insertion. Saudi J Kidney Dis Transpl. 2008;19:94–6. [PubMed]
154. Nason RW, Abdulrauf BM, Stranc MF. The anatomy of the accessory nerve and cervical lymph node biopsy. Am J Surg. 2000;180:241–3. [PubMed]
155. Symes A, Ellis H. Variations in the surface anatomy of the spinal accessory nerve in the posterior triangle. Surg Radiol Anat. 2005;27:404–8. [PubMed]
156. Tubbs RS, Salter EG, Wellons JC, 3rd, Blount JP, Oakes WJ. Superficial landmarks for the spinal accessory nerve within the posterior cervical triangle. J Neurosurg Spine. 2005;3:375–8. [PubMed]
157. Townsley P, Ravenscroft A, Bedforth N. Ultrasound-guided spinal accessory nerve blockade in the diagnosis and management of trapezius muscle-related myofascial pain. Anaesthesia. 2011;66:386–9. [PubMed]
您需要登录后才可以回帖 登录 | 注册

本版积分规则

丁香叶与你快乐分享

微信公众号

管理员微信

服务时间:8:30-21:30

站长微信/QQ

← 微信/微信群

← QQ

Copyright © 2013-2025 丁香叶 Powered by dxye.com  手机版 
快速回复 返回列表 返回顶部