训练用单针/双针带线【出售】-->外科训练模块总目录
0.5、1、2、3.5、5mm仿生血管仿生体 - 胸腹一体式腹腔镜模拟训练器
仿气腹/半球形腹腔镜模拟训练器
[单端多孔折叠]腹腔镜模拟训练器
「训练教具器械汇总」管理员微信/QQ12087382[问题反馈]
开启左侧

胆囊切除术,机器人优于腹腔镜

[复制链接]
发表于 2013-1-24 12:44:58 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

×
原文:

Is robotic cholecystectomy superior than laparoscopic

Abstract

This review article confronted to the new technology on the occasion of the twentieth anniversary in the great development of general surgery. After great success of laparoscopic cholecystectomy during the last century , robotic cholecystectomy is rising now undoubtedly. Robotic surgery still in the beginning . We try to compare the safety of both technique separately.

Background

On September 12 th 1985, Prof. Erich Muhe of Boeblingen, Germany, carried out the first laparoscopic cholecystectomy. Later he modified his technique and operated through a trocar sleeve. Finally , he designed an ( open laparoscope) with a circular light .By March 1987 , Muhe had conducted 97 endoscopic gallbladder removals. After reporting that he had performed the first laparoscopic cholecystectomy in the Germany Surgical Society meeting in 1986, he was severely criticized (Litynski , 1998).

Since 1921when Czech playwright Karl Capek introduced the notion and coined the term robot in his play Rossom’s Universal Robots, robots have taken on increasingly more importance both in imagination and reality (Stava RM 2002). Robot, taken from the Czech robota, meaning forced labour, has evolved in meaning from dumb machines that perform menial, repetitive tasks to the highly intelligent anthropomorphic robots of popular culture. Although today’s robots are still unintelligent machines, great strides have been made in expanding their utility. Today robots are used to perform highly specific, highly precise, and dangerous tasks in industry and research previously not possible with a human work force. Robots are routinely used to manufacture microprocessors used in computers, explore the deep sea, and work in hazardous environment to name a few. Robotics, however, has been slow to enter the field of medicine.

The origin of surgical robotic is rooted in the strength and weaknesses of its predecessors. Minimally invasive surgery began in 1987 with the first laparoscopic cholecystectomy. Since then, the list of procedures performed laparoscopically has grown at a pace consistent with improvements in technology and the technical skill of surgeons( Jones SB and Jones DB 2001).

Robots were first used in surgery in the mid-1990s. The first food and drug administration- approved AESOP robot , held the laparoscopic camera and resbond to voice command that moves the tip of the instruments in a natural direction ( Sakier and Wang 1994).The advantages of minimally invasive surgery are very popular among surgeons, patients, and insurance companies. Incisions are smaller, the risk of infection is less, hospital stays are shorter, if necessary at all, and convalescence is significantly reduced. Many studies have shown that laparoscopic procedures result in decreased hospital stays, a quicker return to the workforce, decreased pain, better cosmesis, and better postoperative immune function (Kim VB et al 2002 ). As attractive as minimally invasive surgery is, there are several limitations. Some of the more prominent limitations involve the technical and mechanical nature of the equipment. Inherent in current laparoscopic equipment is a loss of haptic feedback (force and tactile), natural hand-eye coordination, and dexterity. Moving the laparoscopic instruments while watching a 2-dimensional video monitor is somewhat counterintuitive. One must move the instrument in the opposite direction from the desired target on the monitor to interact with the site of interest. Hand-eye coordination is therefore compromised. Some refer to this as the fulcrum effect ( Stava RM ,et al 2001 ). Current instruments have restricted degrees of motion; most have 4 degrees of motion, whereas the human wrist and hand have 7 degrees of motion. There is also a decreased sense of touch that makes tissue manipulation more heavily dependent on visualization. Finally, physiologic tremors in the surgeon are readily transmitted through the length of rigid instruments. These limitations make more delicate dissections and anastomoses difficult if not impossible (Prasad et al 2001). The motivation to develop surgical robots is rooted in the desire to overcome the limitations of current laparoscopic technologies and to expand the benefits of minimally invasive surgery.

Advatages of Robotic Assisted Surgery:

The advantages of these systems are many because they overcome many of the obstacles of laparoscopic surgery. They increase dexterity, hand-eye coordination and an ergonomic position, and improve visualization . In addition, these systems make surgeries that were technically difficult or unfeasible previously, now possible. These robotic systems enhance dexterity in several ways. Instruments with increased degrees of freedom greatly enhance the surgeon’s ability to manipulate instruments and thus the tissues. These systems are designed so that the surgeons’ tremor can be compensated on the end-effector motion through appropriate hardware and software filters. In transformed into micromotions inside the patient (Kim VB , et al 2002). Another important advantage is the restoration of proper hand-eye coordination and an ergonomic position. These robotic systems eliminate the fulcrum effect, making instrument manipulation more intuitive. With the surgeon sitting at a remote, ergonomically designed workstation, current systems also eliminate the need to twist and turn in awkward positions to move the instruments and visualize the monitor.

By most accounts, the enhanced vision afforded by these systems is remarkable. The 3-dimensional view with depth perception is a marked improvement over the conventional laparoscopic camera views. Also to one’s advantage is the surgeon’s ability to directly control a stable visual field with increased magnification and maneuverability. All of this creates images with increased resolution that, combined with the increased degrees of freedom and enhanced dexterity, greatly enhances the surgeon’s ability to identify and dissect natomic structures as well as to construct microanastomoses.

Disadvatages of robotic- assisted system:

There are several disadvantages to these systems. First of all, robotic surgery is a new technology and its uses and efficacy have not yet been well established .To date, mostly studies of feasibility have been conducted, and almost no long-term follow up studies have been performed. Many procedures will also have to be redesigned to optimize the use of robotic arms and increase efficiency. However, time will most likely remedy these disadvantages.

Another disadvantage of these systems is their cost. With a price tag of a million dollars, their cost is nearly prohibitive. Whether the price of these systems will fall or rise is a matter of conjecture. Some believe that with improvements in technology and as more experience is gained with robotic systems, the price will fall (Kim VB ,et al 2002). Others believe that improvements in technology, such as haptics, increased processor speeds, and more complex and capable software will increase the cost of these systems. Also at issue is the problem of upgrading systems; how much will hospitals and healthcare organizations have to spend on upgrades and how often? In any case, many believe that to justify the purchase of these systems they must gain widespread multidisciplinary use ( Stava R M , et al 2001).

Another disadvantage is the size of these systems. Both systems have relatively large footprints and relatively cumbersome robotic arms. This is an important disadvantage in today’s already crowded-operating rooms( Stava R M , et al 2001). It may be difficult for both the surgical team and the robot to fit into the operating room. Some suggest that miniaturizing the robotic arms and instruments will address the problems associated with their current size. Others believe that larger operating suites with multiple booms and wall mountings will be needed to accommodate the extra space requirements of robotic surgical systems. The cost of making room for these robots and the cost of the robots themselves make them an especially expensive technology.

One of the potential disadvantages identified is a lack of compatible instruments and equipment. Lack of certain instruments increases reliance on tableside assistants to perform part of the surgery (Kim VB ,et al 2002). This, however, is a transient disadvantage because new technologies have and will develop to address these shortcomings.

Most of the disadvantages identified will be remedied with time and improvements in technology. Only time will tell if the use of these systems justifies their cost. If the cost of these systems remains high and they do not reduce the cost of routine procedures, it is unlikely that there will be a robot in every operating room and thus unlikely that they will be used for routine surgeries.

Results of robotic cholecystectomy:

David W et al in 2004 after a retrospective study from October 2002 to July 2003 of all robotic assisted cholecystectomy (19 cases) found that 16 were completed successfully . A mechanical problem with the robot in 3 consecutive patients ; however all procedures were competed laparoscopically.There were no complication and no converstions to open procedure .They conclude that robotic surgery offers many potential advantages , including surgeon comfort , elimination of surgeon tremors , improved imaging , and increased degrees of freedom of the operative instruments, compared with conventional laparoscopic surgery(David w et al 2004).

Tamas J et al 2006 showed after Forty-eight of the 51 procedures (94%) were completed robotically. We did not experience any significant complications directly related to robotics surgery. . The mean ± SD operating time was 77 ± 22.3 min. The mean setup time for robotics (from incision until robot was in place, including draping the robot) was 24 ± 8.8 min. However, the setup time significantly improved as we gained more experience: from 30.6 ± 10.7 min (first 16 cases) to 18.3 ± 4.0 min (cases 33–48). The mean robotic time was 34 ± 16.1 min. We observed no significant improvement in robotic procedure time (Tamas J et al 2006).

Breitenstein et al 2008 showed after A prospective case-matched study was conducted on 50 consecutive patients, who underwent robotic-assisted cholecystectomy (Da Vinci Robot, Intuitive Surgical)between December 2004 and February 2006. These patients were matched 1:1 to 50 patients with conventional laparoscopic cholecystectomy, according to age, gender, American Society of Anesthesiologists score, histology, and surgical experience. Endpoints were complications after surgery (mean follow-up of 12.3 months [SD 1.2]), conversion rates, operative time, and hospital costs (ClinicalTrial.gov ID: NCT00562900).

No minor, but 1 major complication occurred in each group (2%). No conversion to open surgery was needed in either group. Operation time (skin-to-skin, 55 minutes vs. 50 minutes, P < 0.85) and hospital stay (2.6 days vs. 2.8 days) were similar. Overall hospital costs were significantly higher for robotic-assisted cholecystectomy $7985.4 (SD 1760.9) versus $6255.3 (SD 1956.4), P < 0.001, with a raw difference of $1730.1(95% CI 991.4-2468.7) and a difference adjusted for confounders of $1606.4 (95% CI 1076.7-2136.2). This difference was mainly related to the amortization and consumables of the robotic system (Breitenstein et al 2008) Gamal A. Khairy et al (2004) showed that robotic surgery is the surgery of the future , feasible and safe .

Discussion:

Prof. Erich Muhe After reporting that he had performed the first laparoscopic cholecystectomy in the Germany Surgical Society meeting in 1986, he was severely criticized (Litynski , 1998). Robots were first used in surgery in the mid-1990s. The first food and drug administration- approved AESOP robot , held the laparoscopic camera and resbond to voice command that moves the tip of the instruments in a natural direction ( Sakier and Wang 1994).Usually there great resistance to the new era in surgery .There are several advantages of robotic surgery over conventional laparoscopic cholecystectomy , but there also disadvantages . Robotic surgery is as safe as conventional laparoscopic surgery( Breitenstein et al 2008).David W et al conclude that robotic surgery offers many potential advantages , including surgeon comfort , elimination of surgeon tremors , improved conventional laparoscopic surgery(David w et al 2004).


Conclusion:

Robotic surgery offers many potential advantages , including surgeon comfort , elimination of surgeon tremors , improved imaging , and increased degrees of freedom of the operative instruments , compared with conventional laparoscopic surgery. The safety of both robotic and conventional laparoscopic cholecystectomy are nearly the same. Most of the disadvantages of the robotic surgery identified will be remedied with time and improvements in technology. Only time will tell if the use of these systems justifies their cost. If the cost of these systems remains high and they do not reduce the cost of routine procedures, it is unlikely that there will be a robot in every operating room and thus unlikely that they will be used for routine surgeries.
References:
Litynski G S. Erich Muhe and the rejection of laparoscopic cholecystectomy (1985): A Surgeon ahead of his time. JSLS 1998 ; 2:341-6.
Stava R M . Surgical robotics: The early chronicles : a personal historical prospective. Surg Laparosc Endosc percutan tech . 2002 ; 12: 6 – 16 [PubMed].
Anthony R , Lanfranco , Bas et al : Robotic surgery A current Perspective. Ann Surgery. 2004 January.
Jones S B , Jones D B . Surgical aspect and future developments in the laparoscopy. Anthiol Clinic North Am . 2001 ; 19 : 107- 124.
Kim V B , Chapman W H , Albert R J , et al : Early experience with telemanipulative robot-assisted laparoscopic cholecystectomy using Da Vinici system. Surg laparosc Endosc percut 2002 ; 12:34-40.
Prasad S M , Ducko CT , Stephenson E R et al : Prospective clinical trial of robotically assisted endoscopic coronary grafting with 1 year follow up . Ann Surg . 2001 ; 233: 725-732.
Stava R M, Bower Sox J C Mack M, et al: Robotic surgery ; state of art and future trends. Contemp Surg. 2001 ; 57 : 489-499.
David W. Miller, Richard t. Schlinkert , Denise K Schlinkert : Robotic assisted laparoscopic cholecystectomy : Initial Mayo Clinic Scott Experience . Mayo clinic proc . September 2004 ; 79 (9) ; 1132-1136.
Sakier J M , Wang Y : Robotically assisted laparoscopic surgery: from concept to development. Surg Endosc . 1994 ; 8: 63-66.
Tamas J .Vidovszky , William Smith , Jaganmath ghosh and Mohamed R Ali : Journal of surgical Research volume 136 . Issue2 , December 2006 Pages 172-178.
Breitenstien s , et al : Robotic-assisted versus Laparoscopic cholecyctectomy. Outcome and cost analysis of a case matched control study . Ann Surg. 2008 Jun ; 247 (6) : 987-993.
Gamal A .Khairy et al : A new era in laparoscopic surgery Evolution of robotic-assisted Laparoscopic procedures. Depatment of surgery, college of medicine and King Khalid University Hospital .22nd November 2004.
 楼主| 发表于 2013-1-24 12:46:04 | 显示全部楼层
小米+步枪:

抽象

该评论文章面对普外科的大发展20周年之际,新技术。机器人胆囊切除术,腹腔镜胆囊切除术在上个世纪大获成功后,上升无疑。机器人手术的开始。我们尝试两种技术分别比较安全。

背景

1985年9月12日,埃里希·木盒,德国伯布林根教授率先开展了腹腔镜胆囊切除术。后来,他修改了他的技术,并通过套管针套。最后,他设计了一个(开放式腹腔镜)有一个圆形的光。到1987年3月,木盒已进行了97内镜胆囊清除。汇报后,他完成了第一例腹腔镜胆囊切除术于1986年在德国外科学会的一次会议上,他被严重的批评(Litynski,1998年)。

由于1921when捷克剧作家卡尔·恰佩克引入的概念,并创造了这个词在他的发挥Rossom的通用机器人的机器人,机器人已经越来越多的重要性无论是在想象与现实(2002年Stava的RM)。来自捷克ROBOTA,意为强迫劳动的机器人,已经发展愚蠢的机器上执行琐碎的,重复性的任务,高度智能化的拟人机器人的流行文化的意义。虽然今天的机器人还是非智能机,取得了很大的进步,在扩大他们的效用。今天,机器人被用来执行非常具体的,高度精确的和危险的任务,在工业和研究领域以前是不可能与一个人的工作队。机器人通常用于制造在计算机上使用的微处理器,探索深海,并在危险环境中工作,仅举几例。然而,机器人技术,已经慢慢进入医药领域。

外科手术机器人的起源,植根于它的前辈的实力和弱点。开始于1987年,第一例腹腔镜胆囊切除术的微创手术。自那以后,列表中的程序进行腹腔镜手术已经发展的步伐一致,随着技术的改进和技术技能的外科医生(SB琼斯和琼斯DB 2001)。

在20世纪90年代中期第一次被使用在机器人手术。第一食品和药物管理局批准的AESOP机器人举行的腹腔镜摄像机和resbond的语音命令,将尖端的仪器在一个自然的方向(Sakier和王,1994)。微创手术的优点是非常流行的外科医生,患者和保险公司。切口较小,受感染的风险比较少,住院时间短,如果必要的,恢复期显着减少。许多研究表明,腹腔镜手术在住院天数减少的结果,劳动力更快的恢复,减少疼痛,更好的美容效果,更好的术后免疫功能(金VB等2002)。微创手术是有吸引力的,有一些限制。一些比较突出的局限性涉及的技术和机械性质的设备。在目前的腹腔镜设备是内在力和触觉的触觉反馈(亏损),自然的手眼协调能力,以及灵巧。移动边看一个2维的视频监视器的腹腔镜器械是有些违反直觉的。从所需的目标在监视器上进行交互的感兴趣的部位,一个人必须在相反的方向移动仪器。手眼协调能力因此受到影响。有人把这种作为支点的效果(Stava的RM等人2001)。目前的工具限制度的议案;有4度的运动,而人的手腕和手有7度的运动。也有下降的触觉,使组织操纵更多地依赖于可视化。最后,在外科医生的生理性震颤很容易透过硬质工具的长度。这些限制使得更加细腻解剖和吻合困难,如果不是不可能的(普拉萨德等人,2001)。外科手术机器人的动力,发展是植根于希望克服目前腹腔镜技术的限制,并扩大微创手术的好处。

Advatages的机器人辅助外科手术:

这些系统的优点是很多的,因为他们克服了许多腹腔镜手术的障碍。他们增加灵巧度,手眼协调能力和符合人体工程学的位置,提高了可视化。此外,这些系统使技术上是困难的或不可行的,先前,现在有可能的手术。这些机器人系统提高了灵巧的几种方法。仪器增加自由度大大提高外科医生的能力来操纵的工具和组织。这些系统的设计,使外科医生的震颤,可以通过适当的硬件和软件过滤器的末端执行器的运动补偿。在转化micromotions内的病人(金VB,等人,2002)。另一个重要的优点是恢复适当的手眼协调能力和符合人体工程学的位置。这些机器人系统消除了支点的作用,使仪器操作更直观。随着外科医生坐在一个遥控器,符合人体工程学设计的工作站,目前的系统也不再需要转来转尴尬的位置,移动的工具和可视化的监控。

大多数人认为,这些系统所提供的增强视力显着。与深度知觉的3维图是一个显着的改善,超过常规的腹腔镜摄像机视图。此外,一个人的优点是外科医生的能力直接控制稳定的视野,更高的放大倍率和可操作性。所有这一切都造成图像具有更高的分辨率,结合自由程度的提高和增强灵巧,大大提高了外科医生的能力识别和解剖natomic的结构以及建造microanastomoses。

Disadvatages机器人辅助系统:

在这些系统中有几个缺点。首先,机器人手术是一项新技术,它的用途和有效性尚未得到很好的建立。至目前为止,大部分已进行了可行性研究,而且几乎没有长期跟进研究已经完成。许多程序也将被重新设计,优化的机器人武器的使用,提高工作效率。然而,时间将最有可能弥补这些缺点。

这些系统的另一个缺点是它们的成本。随着一百万美元的价格标签,其成本几乎是高昂的。这些系统的价格是否会下降或上升&#8203;&#8203;是一个猜想的问题。有些人认为,随着技术的改进和更多的经验,获得了与机器人系统,价格将下降(金VB,等2002)。另一些人则认为,技术的改进,如触觉,提高处理器速度和更复杂的和有能力的软件,这些系统的成本将增加。另外的问题是系统升级的问题;多少医院和医疗机构将不得不花费升级和多久呢?在任何情况下,许多人认为,以证明购买这些系统,他们必须得到广泛的多学科使用(Stava的RM,等2001)。

另一个缺点是这些系统的大小。这两个系统有比较大的脚印和相对繁琐的机械手臂。这是一个重要的缺陷,在今天已经拥挤的手术室(Stava的RM,等2001)。这可能是困难的外科小组和机器人适合进入手术室。有人建议,小型化的机器人武器和工具,解决有关的问题,他们目前的大小。其他人则认为,较大的工作套房,配有多个围油栏和墙面固定件,将需要的机器人手术系统,以&#8203;&#8203;容纳额外的空间需求。的空间,这些机器人和机器人本身的成本,使他们的成本是昂贵的技术。

确定的潜在的缺点之一是缺乏兼容的仪器和设备。某些工具的缺乏增加了手术的执行部分(金VB,等2002)上桌边助理的依赖。然而,这是一个短暂的缺点,因为有新的技术和发展来解决这些不足之处。

随着时间的推移和技术的改进确定的缺点将得到纠正。只有时间会告诉我们如果使用这些系统证明他们的成本。如果这些系统的成本仍然很高,而且它们不减少成本的例行程序,它是不太可能会有一个机器人在每一个手术室,从而不太可能的,它们将被用于常规的外科手术。

机器人胆囊切除术的结果:

大卫·W等人在2004年后所有机器人辅助胆囊切除术(19例),从2002年10月至2003年7月的一项回顾性研究发现,16例成功完成。在连续3个病人的机器人的机械问题,但所有程序了竞争laparoscopically.There的无并发症和没有converstions打开程序。他们的结论是,机器人手术提供了许多潜在的优势,包括外科医生的舒适性,消除外科医生震颤,提高成像,和增加的操作工具的自由程度,而与传统的腹腔镜手术(戴维瓦特等人2004)。

塔马斯·J等人,2006年后显示的51个程序(94%)48个,完成机器人。我们没有遇到任何重大直接关系到机器人手术的并发症。。的平均值±SD,手术时间为77±22.3分钟。机器人(从切口,直到机器人的地方,,包括悬垂性的机器人)的平均安装时间为24±8.8分钟。但是,安装时间显着改善,我们获得了更多的经验:从30.6±10.7分(第16例)为18.3±4.0分钟(例33-48)。机器人的平均时间为34±16.1分钟。我们没有观察到机器人手术时间显着改善,(塔马斯·J等人,2006年)的。

布莱腾施泰因等人,2008年后显示一个前瞻性病例匹配的研究是在50例患者中,接受了机器人辅助胆囊切除术(达芬奇机器人,Intuitive Surgical公司)在2004年12月和2006年2月。这些患者均符合1:1到传统的腹腔镜胆囊切除术50例,根据年龄,性别,麻醉医师评分,组织学和手术经验的美国社会。终点是手术后的并发症(平均随访12.3个月[SD 1.2),转换率,手术时间,住院费用(ClinicalTrial.gov ID:NCT00562900)。

主要并发症发生不小的,但各组(2%)。无中转开腹手术,需要在任何一组。操作时间(皮肤对皮肤,55分钟与50分钟,P <0.85),住院时间(2.6天vs 2.8天)是相似的。总体住院费用分别为显著更高的机器人辅助胆囊切除术$ 7985.4(SD 1760.9)与$ 6255.3(SD 1956.4),P <0.001,与原始的差异1730.1美元(CI 991.4-2468.7 95%)和有差别的1606.4美元干扰因素作出调整( 95%CI 1076.7-2136.2)。这种差异主要与摊销及消耗品,机器人系统(布莱腾施泰因等人,2008年),贾迈勒A.凯里等人(2004)表明,机器人手术是外科手术的未来,可行和安全的。

讨论:

埃里希·木盒教授汇报&#8203;&#8203;后,他完成了第一例腹腔镜胆囊切除术于1986年在德国外科学会的一次会议上,他受到了严重的批评(Litynski,1998年)。在20世纪90年代中期第一次被使用在机器人手术。第一食品和药物管理局批准的AESOP机器人,举行的腹腔镜摄像机和resbond的语音命令,在一个自然的方向移动的尖端仪器(Sakier和王,1994)。通常有很大的阻力,在手术的新时代。有几个优点机器人手术比传统腹腔镜胆囊切除术,但也有缺点。机器人手术是安全的,因为传统的腹腔镜手术(布莱腾施泰因等人,2008年)。,大卫W等人的结论,机器人手术提供了许多潜在的优势,包括外科医生的舒适性,消除外科医生震颤,改进传统的腹腔镜手术(大卫W等人,2004)。


结论:

机器人手术提供了许多潜在的优势,包括外科医生的舒适性,消除外科医生震颤,提高成像和手术器械的自由程度的提高,与传统的腹 &#8203;&#8203;腔镜手术相比。机器人和传统的腹 &#8203;&#8203;腔镜胆囊切除术的安全性几乎是相同的。大多数的识别,机器人手术的缺点,随着时间的推移和技术的改进,都将得到纠正。只有时间会告诉我们如果使用这些系统证明他们的成本。如果这些系统的成本仍然很高,他们没有降低成本的例行程序,它是不可能的,会有一个机器人在每一个手术室,因此不太可能,他们将被用于常规手术。
参考文献:
Litynski广书。埃里希·木盒,并拒绝腹腔镜胆囊切除术(1985):一位外科医生,他的时间提前。JSLS 1998; 2:341-6。
Stava的RM。外科手术机器人:早期纪事:个人历史前瞻性。外科Laparosc,内镜percutan科技。2002年,12:6 - 16 [
安东尼R,兰弗兰科,BAS等:机器人手术的电流透视。安手术。2004年1月,
琼斯琼斯SB,DB。腹腔镜手术方面和未来的发展。Anthiol诊所北。2001,19:107 - 124。:
阿尔伯特·查普曼WH,金VB,RJ,等:早期经验telemanipulative机器人辅助腹腔镜胆囊切除术使用大Vinici系统。laparosc内镜外科percut 2002; 12:34-40。
·普拉萨德·SM,Ducko CT,斯蒂芬森ER等:机器人辅助内镜冠状动脉移植术,随访1年的前瞻性临床试验。安外科。2001,233:725-732。
Stava的RM,凉亭:JC麦克M,硫氧化物(SOx)等:机器人外科手术;国家的艺术和未来的发展趋势。中国当代外科。2001,57:489-499。
大卫·米勒,理查德吨。Schlinkert,丹尼斯K表Schlinkert:机器人辅助腹腔镜胆囊切除术:初始梅奥诊所的斯科特经验。梅奥诊所的进程。2004年9月,79(9)1132-1136。
Sakier JM,王元:机器人辅助的腹腔镜手术:从概念到发展。外科内镜。1994年8:63-66。
塔马斯J。Vidovszky,Jaganmath Ghosh和威廉史密斯,穆罕默德·&#341;阿里:期刊的手术研究量136。ISSUE2 2006年12月页172-178。
Breitenstien,等人机器人辅助与腹腔镜cholecyctectomy的的。结果和成本分析的情况下,匹配的对照研究。安外科。2008年军; 247(6):987-993。
贾迈勒。凯里等:一个新的时代在机器人辅助的腹腔镜手术腹腔镜手术的演变。Depatment手术,大学的医学和哈立德国王大学医院2004年11月0.22第二。


点评

是否能普及,梦寐以求。  发表于 2013-8-25 09:52
发表于 2013-8-25 09:51:52 | 显示全部楼层
高科技、前景广阔。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

丁香叶与你快乐分享

微信公众号

管理员微信

服务时间:8:30-21:30

站长微信/QQ

← 微信/微信群

← QQ

Copyright © 2013-2025 丁香叶 Powered by dxye.com  手机版 
快速回复 返回列表 返回顶部